K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2022

a: ΔABC cân tại A

nên góc ABC=góc ACB

ΔBCA cân tại A

mà AH la trung tuyến

nên AH vuônggóc với BC

b: Xét ΔDMH vuông tại M và ΔDMC vuông tại M có

DM chung

MH=MC

Do đó: ΔDMH=ΔDMC

c: Xét ΔAHC có MD//AC

nên AD/DC=HM/MC=1

=>D là trung điểm của CA

Xét ΔCBA có CD/CA=CH/CB

nên HD//AB

1 tháng 8 2019

#)Giải : (Hình tự vẽ lười lắm òi)

Vì \(AB//CD\Rightarrow\widehat{BAC}+\widehat{ACD}=180^o=90^o+\widehat{ACD}=180^o\Rightarrow\widehat{ACD}=90^o\)

Ta có : \(\widehat{BAC}=\widehat{ACD}\)

\(AB=CD\left(c/m\Delta ABM=\Delta CDM\right)\)

AC là cạnh chung 

\(\Rightarrow\Delta ABC=\Delta ACD\left(c.g.c\right)\)

\(\Rightarrow AD=BC\)

Mà \(AM=\frac{1}{2}AD\Rightarrow AM=\frac{1}{2}BC\)

1 tháng 8 2019

A B C D M

M là trung điểm AD => AM = 1/2 AD (1)

                                và AM = MD

Xét ∆AMB và ∆AMC có :

AM = MD (cmt)

\(\widehat{AMB}=\widehat{AMC}\)( đối đỉnh)

MB = MC (M là trung điểm BC)

do đó ∆AMB = ∆AMC (c-g-c)

=> AB = AC và \(\widehat{B_1}=\widehat{C_1}\)

Mà \(\widehat{B_1};\widehat{C_1}\)ở vị trí so le trong

=> AB // CD

=> \(\widehat{BAC}+\widehat{ACD}=180^o\)( trong cùng phía)

Mà \(\widehat{BAC}=90^o\Rightarrow\widehat{ACD}=90^o\Rightarrow\widehat{BAC}=\widehat{ACD}\)

Xét ∆ABC và ∆CDA có :

AB = AC (cmt)

\(\widehat{BAC}=\widehat{ACD}\)

AC chung

do đó : ∆ABC = ∆CDA

=> BC = AD (2)

Từ (1),(2) => đpcm

a) Xét tam giác AND và tam giác CNB ta có:

NB = ND (Vì N là trung điểm của BD)

góc AND = góc CNB (đối đỉnh)

NA = NC (Vì N là trung điểm của AC)

=> tam giác AND = tam giác CNB (c-g-c)

b) Vì tam giác AND = tam giác CNB

=> AD = BC (2 cạnh tương ứng)

=> góc DAN = góc BCN (2 góc tương ứng)

mà góc DAN và góc BCN là 2 góc so le trong

suy ra AD // BC

c) chưa nghĩ ra

28 tháng 3 2019

Nếu mình có thể giải đc thì tốt quá

31 tháng 1 2022

ko giải đc đừng trả lời ngáo à

a: Xét tứ giác MNCB có MN//CB

nên MNCB là hình thang

Hình thang MNCB có \(\widehat{MBC}=\widehat{NCB}\)

nên MNCB là hình thang cân

b: MNCB là hình thang cân

=>MB=NC và MC=NB

AM+MB=AB

AN+NC=AC

mà MB=NC và AB=AC

nên AM=AN

Xét ΔANB và ΔAMC có

AN=AM

NB=MC

AB=AC

Do đó: ΔANB=ΔAMC

=>\(\widehat{ANB}=\widehat{AMC}=90^0\)

=>BN vuông góc AC

Xét ΔABC có

BN,CM là đường cao

BN cắt CM tại O

Do đó: O là trực tâm của ΔABC

=>AO\(\perp\)BC(1)

ΔABC cân tại A

mà AI là đường trung tuyến

nên AI\(\perp\)BC(2)

Từ (1) và (2) suy ra A,O,I thẳng hàng

14 tháng 11 2016

A B C D E H M

a/ Ta có : AM = ME , BM = MC

=> Tứ giác ABEC là hình bình hành => CE = AB (1)

Xét tam giác ABH và tam giác BHD có góc BHA = góc BHD = 90 độ , BH là cạnh chung , AH = HD

=> tam giác ABH = tam giác BHD (c.g.c) => AB =BD (2)

Từ (1) và (2) suy ra được BD = CE

b/ Từ câu a) ta có tam giác ABH = tam giác BHD (c.g.c) => góc ABH = góc BHD 

=> BC là tia phân giác góc ABD

c/ Ta có \(\hept{\begin{cases}AH=HD\\BH\perp AD\end{cases}}\) => BH là đường trung trực của AD hay

BC là đường trung trực của AD. 

14 tháng 11 2016

Do mo de the ma ko biet lam

26 tháng 11 2021

a) Xét Δ AMC và Δ AMB có:

AC = AB (gt)

AM là cạnh chung

MC = MB (gt)

⇒Δ AMC = Δ AMB (c.c.c)

⇒∠CAM = ∠BAM (2 góc tương ứng)

⇒AM là phân giác BAC ( đpcm)

b) Xét t/g ANC và t/g ANB có:

AC = AB (gt)

AN là cạnh chung

NC = NB (gt)

⇒ Δ ANC = Δ ANB (c.c.c)

⇒ ∠CAN = ∠BAN (2 góc tương ứng)

⇒ AN là phân giác BAC

Như vậy, AM và AN đều là phân giác của BAC

Nên AM và AN trùng nhau hay A,M,N thẳng hàng (đpcm)

c)Vì Δ ANC = Δ ANB (câu b)

⇒ ∠ANC = ∠ANB (2 góc tương ứng)

Mà ∠ANC + ∠ANB = 180o ( kề bù)

Nên ∠ANC = ∠ANB = 90o

⇒AN vg BC hay MN vg BC

Mà CN = BN (gt)

Do đó, MN là đường trung trực của BC ( đpcm)

14 tháng 11 2016

Ta có hình vẽ:

A B C D E M H

a) Xét Δ CME và Δ BMA có:

EM = AM (gt)

CME = BMA (đối đỉnh)

CM = BM (gt)

Do đó, Δ CME = Δ BMA (c.g.c)

=> CE = AB (2 cạnh tương ứng) (1)

Chứng minh tương tự và => Δ ABH = Δ DBH (c.g.c)

=> AB = BD (2 cạnh tương ứng)

Từ (1) và (2) => CE = BD (đpcm)

b) Vì Δ ABH = Δ DBH (câu a) nên góc ABH = góc DBH (2 góc tương ứng)

=> BH là phân giác của góc ABD hay BC là phân giác của góc ABD (đpcm)

c) Vì \(AH\perp BC\) nên \(AD\perp BC\)

Mà AH = DH (gt)

Do đó, BC là đường trung trực của AD (đpcm)