giải PT
\(x^2+\left(a+c\right)x-2a\left(a-c\right)=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+\left(a+c\right)x-2a\left(a-c\right)=0\)
\(\Delta=\left(a+c\right)^2-4\cdot-2a\left(a-c\right)\cdot1\)
\(=a^2+2ac+c^2+8a\left(a-c\right)=a^2+2ac+c^2+8a^2-8ac\)
\(=9a^2-6ac+c^2=\left(3a-c\right)^2\ge0\forall a,c\)
Với \(3a=c\) thì:
\(x_1=x_2=\dfrac{-\left(a+c\right)}{2}\)
Với: \(3a>c\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{-\left(a+c\right)+\sqrt{\left(3a-c\right)^2}}{2}=\dfrac{-a-c+3a-c}{2}=\dfrac{a-c}{2}\\x_2=\dfrac{-\left(a+c\right)-\sqrt{\left(3a-c\right)^2}}{2}=\dfrac{-a-c-3a+c}{2}=-2a\end{matrix}\right.\)
Quy đồng rồi phân tích nhân tử bình thường đi
\(\left(x-1\right)\left(x-ab-bc-ca\right)\left(a-b\right)\left(b-c\right)\left(c-a\right)=0\)
a: =(x-3)(2x+5)
b: \(\Leftrightarrow\left(x-2\right)\left(x+2+3-2x\right)=0\)
=>(x-2)(5-x)=0
=>x=2 hoặc x=5
c: =>x-1=0
hay x=1
\(\Delta'=\left(-2\right)^2-3.\left(-8\right)=4+24=28>0.\)
\(\Rightarrow\) Pt có 2 nghiệm phân biệt \(x_1;x_2.\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{2+2\sqrt{7}}{3}.\\x_2=\dfrac{2-2\sqrt{7}}{3}.\end{matrix}\right.\)