rut gon bieu thuc
\(\left(3\sqrt{2}+\sqrt{6}\right)\times\sqrt{6-3\sqrt{3}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
XEM CÓ SAI ĐỀ BÀI KHÔNG, MK RÚT GỌN RA TO LẮM
\(=\dfrac{x+5\sqrt{x}+6-x+5\sqrt{x}-6}{\left(\sqrt{x}+3\right)^2\cdot\left(\sqrt{x}-3\right)}\cdot\dfrac{x-9}{\sqrt{x}}\)
\(=\dfrac{10\sqrt{x}}{\sqrt{x}}\cdot\dfrac{1}{\sqrt{x}+3}=\dfrac{10}{\sqrt{x}+3}\)
\(\sqrt{3-2\sqrt{2}}=\sqrt{1-2\sqrt{2}+2}=\sqrt{\left(1-\sqrt{2}\right)^2}=\left|1-\sqrt{2}\right|\)
\(\sqrt{5-2\sqrt{6}}=\sqrt{2-2\sqrt{6}+3}=\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}=\left|\sqrt{2}-\sqrt{3}\right|\)
Mà\(1< \sqrt{2};\sqrt{2}< \sqrt{3}\)
\(\Rightarrow\sqrt{3-2\sqrt{2}}+\sqrt{5-2\sqrt{6}}=\sqrt{2}-1+\sqrt{3}-\sqrt{2}\)
\(=\sqrt{3}-1\)
ta có: \(\sqrt{3-2\sqrt{2}}+\sqrt{5-2\sqrt{6}}=\sqrt{\left(\sqrt{2}-1\right)^2}+\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}.\)
\(\sqrt{2}-1+\sqrt{3}-\sqrt{2}=\sqrt{3}-1\)
\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+2\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\left(\sqrt{4}+\sqrt{6}+\sqrt{8}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=1+\frac{\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=1+\sqrt{2}\)
đk: x>=0; x khác 3
a) \(P=\frac{\sqrt{x}-3}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}-\frac{5}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}+\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}-3}=\frac{\sqrt{x}-3-5+x-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}=\frac{x+\sqrt{x}-12}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)
\(P=\frac{\left(\sqrt{x}+4\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+4}{\sqrt{x}+2}\)
b) \(P=\frac{\sqrt{x}+2+2}{\sqrt{x}+2}=1+\frac{2}{\sqrt{x}+2}\)
ta có: \(x\ge0\Rightarrow\sqrt{x}\ge0\Leftrightarrow\sqrt{x}+2\ge2\Leftrightarrow\frac{2}{\sqrt{x}+2}\le1\Leftrightarrow1+\frac{2}{\sqrt{x}+2}\le2\Rightarrow MaxP=2\Rightarrow x=0\)
1)
a)
\(\sqrt{11-6\sqrt{2}}=\sqrt{2-2.3.\sqrt{2}+9}=\left|\sqrt{2}-3\right|=3-\sqrt{2}\)
\(A=3-\sqrt{2}+3+\sqrt{2}=6\)
b)
\(B^2=24+2\sqrt{12^2-4.11}=24+2\sqrt{100}=24+20=44\)
\(B=\sqrt{44}=2\sqrt{11}\)