Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của biến
(x - 5).(3x + 3) - 3x.(x - 3) + 3x + 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+1\right)^2+\left(x-1\right)^2-2\left(x+1\right)\left(x-1\right)\)
\(=\left[\left(x+1\right)-\left(x-1\right)\right]^2\)
\(=\left(x+1-x+1\right)^2=4\)
=> đpcm
\(\left(3x^2-3x+7\right)-\left(4x^2-5x+3\right)+\left(x^2-2x\right)\)
\(=3x^2-3x+7-4x^2+5x-3+x^2-2x\)
\(=\left(3x^2-4x^2+x^2\right)+\left(-3x+5x-2x\right)+\left(7-3\right)\)
\(=0+0+4\\ =4\)
Vậy giá trị của biểu thức ko phụ thuộc vào giá tị của biến
(x+3)2-(4x+1)-2(x+2)
= x2+6x+9-4x-1-2x-4
= x2+(6x-4x-2x)+(9-1-4)
= x2+4
(3x-2)(9x^2+4+6x)-3(9x^2-2)
=27x^3+12x+18x-18x^2-8-12x-27x^2+6
=-2
Ta có:\(P=x^3\left(z-y^2\right)+y^3x-y^3z^2+z^3y-z^3x^2+x^2y^2z^2-xyz\)
\(\Rightarrow P=x^3\left(z-y^2\right)+x^2y^2z^2-x^2z^3-\left(y^3z^2-z^3y\right)+y^3x-xyz\)
\(\Rightarrow P=x^3\left(z-y^2\right)+x^2z^2\left(y^2-z\right)-yz^2\left(y^2-z\right)+xy\left(y^2-z\right)\)
\(\Rightarrow P=\left(y^2-z\right)\left(x^2z^2-x^3-yz^2+xy\right)\)
\(\Rightarrow P=\left(y^2-z\right)\left(x^2z^2-x^3+xy-yz^2\right)\)
\(\Rightarrow P=\left(y^2-z\right)\left(x^2\left(z^2-x\right)+y\left(x-z^2\right)\right)\)
\(\Rightarrow P=\left(y^2-z\right)\left(x^2\left(z^2-x\right)-y\left(z^2-x\right)\right)\)
\(\Rightarrow P=\left(y^2-z\right)\left(z^2-x\right)\left(x^2-y\right)\)
\(\Rightarrow P=abc\)
Vì a, b, c là hằng số nên P có giá trị không phụ thuộc vào x, y, z
bạn chỉ cần nhân phá ngoặc ra rồi ghép các hạng tử có cùng biến là xong
\(\left(x-5\right)\left(3x+3\right)-3x\left(x-3\right)+3x+7=3x^2-12x-15-3x^2+9x+3x+7\)=-8
=>đpcm