K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(S=\dfrac{2}{10\cdot12}+\dfrac{2}{12\cdot14}+...+\dfrac{2}{98\cdot100}\)

\(S=\dfrac{2}{10}-\dfrac{2}{12}+\dfrac{2}{12}-\dfrac{2}{14}+...+\dfrac{2}{98}-\dfrac{2}{100}\)

\(S=\dfrac{2}{10}-\dfrac{2}{100}=\dfrac{9}{50}=0,18\)

Vậy \(S>\dfrac{1}{10}\)

1 tháng 2

\(S=\dfrac{2}{10\cdot12}+\dfrac{2}{12\cdot14}+\dfrac{2}{14\cdot16}+...+\dfrac{2}{98\cdot100}\)

\(S=\dfrac{2}{10}-\dfrac{2}{12}+\dfrac{2}{12}-\dfrac{2}{14}+...+\dfrac{2}{98}-\dfrac{2}{100}\)

\(S=\dfrac{2}{10}-\dfrac{2}{100}\)

\(S=\dfrac{20}{100}-\dfrac{2}{100}\)

\(S=\dfrac{18}{100}=\dfrac{9}{50}=0,18\)

\(\dfrac{1}{10}=0,1\), mà \(0,1< 0,18\)

 \(\Rightarrow S>\dfrac{1}{10}\left(đpcm\right)\)

19 tháng 7 2021

(1) Để \(\dfrac{2n}{n-2}\) là số nguyên thì 2n⋮n-2

2n-4+4⋮n-2

2n-4⋮n-2⇒4⋮n-2

n-2∈Ư(4)⇒Ư(4)={1;-1;2;-2;4;-4}

n∈{3;1;4;0;6;-2}

(2) \(\dfrac{3}{10.12}+\dfrac{3}{12.14}+...+\dfrac{3}{48.50}\)

=\(\dfrac{3}{2}.\left(\dfrac{2}{10.12}+\dfrac{2}{12.14}+...+\dfrac{2}{48.50}\right)\)

=\(\dfrac{3}{2}.\left(\dfrac{1}{10}-\dfrac{1}{12}+\dfrac{1}{12}-\dfrac{1}{14}+...+\dfrac{1}{48}-\dfrac{1}{50}\right)\)

=\(\dfrac{3}{2}.\left(\dfrac{1}{10}-\dfrac{1}{50}\right)\)

=\(\dfrac{3}{2}.\dfrac{2}{25}\)

=\(\dfrac{3}{25}\)

Giải:

(1) Để \(\dfrac{2n}{n-2}\) là số nguyên thì \(2n⋮n-2\) 

\(2n⋮n-2\) 

\(\Rightarrow2n-4+4⋮n-2\) 

\(\Rightarrow4⋮n-2\) 

\(\Rightarrow n-2\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\) 

n-2-4-2-1124
n-201346
Kết luậnloạit/mt/mt/mt/mt/m

Vậy \(n\in\left\{0;1;3;4;6\right\}\)

(2) \(\dfrac{3}{10.12}+\dfrac{3}{12.14}+\dfrac{3}{14.16}+...+\dfrac{3}{48.50}\) 

\(=\dfrac{3}{2}.\left(\dfrac{2}{10.12}+\dfrac{2}{12.14}+\dfrac{2}{14.16}+...+\dfrac{2}{48.50}\right)\) 

\(=\dfrac{3}{2}.\left(\dfrac{1}{10}-\dfrac{1}{12}+\dfrac{1}{12}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{16}+...+\dfrac{1}{48}-\dfrac{1}{50}\right)\) 

\(=\dfrac{3}{2}.\left(\dfrac{1}{10}-\dfrac{1}{50}\right)\) 

\(=\dfrac{3}{2}.\dfrac{2}{25}\) 

\(=\dfrac{3}{25}\) 

Chúc bạn học tốt!

9 tháng 6 2015

S=\(\frac{2}{10.12}+\frac{2}{12.14}+\frac{2}{14.16}+.....+\frac{2}{98.100}\)

S=\(\frac{1}{10}-\frac{1}{12}+\frac{1}{12}-\frac{1}{14}+........+\frac{1}{98}-\frac{1}{100}\)

S=\(\frac{1}{10}-\frac{1}{100}\)

S=\(\frac{9}{100}\)<\(\frac{1}{10}\)

30 tháng 3 2017

tính S = cánh tính sai phân  

5 tháng 2 2023

\(\dfrac{2^2}{1.3}.\dfrac{3^2}{2.4}.\dfrac{4^2}{3.5}.....\dfrac{99^2}{98.100}\)
\(=\dfrac{2.2.3.3.4.4.....99.99}{1.3.2.4.3.5.....98.100}\)
\(=\dfrac{2.3.4.....99}{1.2.3.4.....98}.\dfrac{2.3.4.....99}{3.4.5.....100}\)
\(=\dfrac{99}{98}\cdot\dfrac{2}{100}\)
\(=\dfrac{99}{4900}\)

14 tháng 5 2022

 

\(S=\dfrac{1}{2^2}\left(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\right)\)

Đặt \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\)

\(\Rightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\)

\(A< \dfrac{2-1}{1.2}+\dfrac{3-2}{2.3}+\dfrac{4-3}{3.4}+...+\dfrac{50-49}{49.50}\)

\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+..+\dfrac{1}{49}-\dfrac{1}{50}\)

\(A< 1-\dfrac{1}{50}\Rightarrow A< 1\)

Ta có \(S=\dfrac{1}{2^2}\left(1+A\right)\)

Ta có

\(A< 1\Rightarrow1+A< 2\Rightarrow S< \dfrac{1}{2^2}.2=\dfrac{1}{2}\)

1/2^2+1/3^2+...+1/50^2<1/1*2+1/2*3*+...+1/49*50

=1/1-1/2+1/2-1/3+...+1/49-1/50<1

=>S<1+1=2

18 tháng 9 2022

Ta có:
1/2^2 > 1/2.3
1/3^2 > 1/3.4
...
1/10^2 > 1/10.11
-> Cộng dọc theo vế ta có:
1/2^2+1/3^2+...+1/10^2 > 1/2.3+1/3.4+...+1/10.11
                                         = 1/2-1/3+1/3-1/4+...+1/10-1/11 

                                         = 1/2 - 1/11 = 9/22  (đpcm)         

17 tháng 9 2017

Ta có:B = \(\dfrac{1.3}{2^2}.\dfrac{2.4}{3^2}.\dfrac{3.5}{4^2}......\dfrac{98.100}{99^2}\)

\(=\dfrac{1.2.3......98}{2.3.4......99}.\dfrac{3.4.5.....100}{2.3.4.....99}=\dfrac{1}{99}.\dfrac{100}{2}=\dfrac{100}{198}\)

Vậy B = \(\dfrac{100}{198}\)

17 tháng 9 2017

Cảm ơn bạn nhiều nhé leuleuvui