75.(4^2021+4^2020+...+4^2+4+1) + 2.5 chia hết cho 100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Xét $A=4^{2021}+4^{2020}+...+4^2+4+1$
$4A=4^{2022}+4^{2021}+...+4^3+4^2+4$
$\Rightarrow 4A-A=4^{2022}-1$
$\Rightarrow 3A=4^{2022}-1$
$\Rightarrow M=75A+25=25(4^{2022}-1)+25=25.4^{2022}=100.4^{2021}\vdots 100$
Ta có đpcm.
đặt biểu thức ban đầu là A, 42020+42019+...+4+1=B
4B=42021 +42020 +42019+...+42+4
3B=4B-B=42021-1 => B= (42021-1)/3
A=75B+25=75(42021-1)/3 + 25= 25(42021-1)+25=25(42021-1+1)=25.42021=100.42020
=> A chia hết cho cả 100 và 42021
mặt khác A=25.42021=42021.(24+1)=24.42021+42021=6.42022+42021
vì 42021<42022 nên A chia 42022 dư 42021
tick cho mk nha!!!!!!!!
Lời giải:
$A-1=4+4^2+4^3+...+4^{2020}+4^{2021}$
$4(A-1)=4^2+4^3+4^4+....+4^{2021}+4^{2022}$
$\Rightarrow 4(A-1)-(A-1)=4^{2022}-4$
$3(A-1)=4^{2022}-4$
$\Rightarrow 3A+1=4^{2022}\vdots 4^{2021}$
\(E=25\left[3\cdot\left(5+4^2+4^3+...+4^{2021}\right)+1\right]\)
\(=25\cdot\left(4^2+4^2+4^3+...+4^{2021}\right)\)
\(=25\cdot4^{2022}⋮4^{2022}\)
Chứng minh rằng: A = 3^2 + 3^3 + 3^4 + 3^5 + … + 3^2020 + 3^2021 chia hết cho 36 - Hoc24
\(A=\left(3^2+3^3\right)+3^2\left(3^2+3^3\right)+...+3^{2018}\left(3^2+3^3\right)\)
\(=36+3^2.36+...+3^{2018}.36=36\left(1+3^2+...+3^{2018}\right)⋮36\)
\(A=\left(3^2+3^3\right)+\left(3^4+3^5\right)+...+\left(3^{2020}+3^{2021}\right)\\ A=\left(3^2+3^3\right)+3^2\left(3^2+3^3\right)+...+3^{2018}\left(3^2+3^3\right)\\ A=\left(3^2+3^3\right)\left(1+3^2+...+3^{2018}\right)\\ A=36\left(1+3^2+...+3^{2018}\right)⋮36\)