K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Theo nguyên lí Di-rich-let ta suy ra : Tồn tại 2 số trong 20 mươi số khi chia 19 có cùng số dư.Suy ra hiệu của hai số đó chia hết cho 19

Giả sử 10n , 10m là hai số có cùng số dư khi chia cho 19 \(\left(1\le n< m\le20\right)\)

\(10^m-10^n⋮19\)

\(10^n.\left(10^{m-n}-1\right)⋮19\)mà 10n không chia hết cho 19 nên suy ra :

\(10^{m-n}-1⋮19\)

\(10^{m-n}-1=19k\)Chú ý : \(\left(k\in N\right)\)

\(10^{m-n}=19k+1\)( đpcm )

27 tháng 5 2016

Các số nguyên tố lớn hơn 3 khi chia cho 12 thì dư 11; 7; 5 hoặc 1; mà 5 + 7 = 1 + 11 = 12 chia hết cho 12 nên nếu chia 4 số dư này thành 2 nhóm là (5; 7) và (1; 11) thì với ba số bất kì đang có khi chia cho 12 sẽ có số dư thuộc 1 trong 2 nhóm trên. (nguyên lí Dirichlet)

k nếu đúng nhé!

29 tháng 5 2016

Các số nguyên tố lớn hơn 3 khi chia cho 12 thì dư 11; 7; 5 hoặc 1; mà 5 + 7 = 1 + 11 = 12 chia hết cho 12 nên nếu chia 4 số dư này thành 2 nhóm là (5; 7) và (1; 11) thì với ba số bất kì đang có khi chia cho 12 sẽ có số dư thuộc 1 trong 2 nhóm trên. (nguyên lí Dirichlet)

5 tháng 11 2017

   

a) 9x2 - 36

=(3x)2-62

=(3x-6)(3x+6)

=4(x-3)(x+3)

b) 2x3y-4x2y2+2xy3

=2xy(x2-2xy+y2)

=2xy(x-y)2

c) ab - b2-a+b

=ab-a-b2+b

=(ab-a)-(b2-b)

=a(b-1)-b(b-1)

=(b-1)(a-b)

P/s đùng để ý đến câu trả lời của mình

26 tháng 6 2016

Mình ràng buộc thêm 1 điều kiện nữa thì đề này mới đúng được: 

"Chia 50 kẹo cho 10 cháu, Cháu nào cũng có kẹo. Chứng minh rằng chia cách nào cũng tồn tại 2 cháu có số kẹo như nhau".

Vì rõ ràng nếu có cháu không có kẹo thì chia như các cháu có số kẹo là: 0;1;2;3;4;5;6;7;8;14 là không có cháu nào có số kẹo giống nhau.

Khi đó, bài toán được giải như sau:

Giả sử tồn tại một cách chia nào đó để không có cháu nào có số kẹo như nhau cách chia mà mỗi cháu có số kẹo là: 1;2;3;4;5;6;7;8;9;10 là có số lượng kẹo nhỏ nhất và bằng = 1/2*10*11=55 cái > 50 cái (đề bài) vô lý.

Vậy cách chia nào cũng tồn tại ít nhất 2 cháu có số kẹo bằng nhau.

2 tháng 8 2015

Ta chứng minh trong 2005 số tự nhiên đã cho chỉ nhận nhiều nhất 4 giá trị khác nhau. Thực vậy, giả sử trong các số đã cho có nhiều hơn 4 số khác nhau, giả sử a1, a2, a3, a4, a5 là 5 số khác nhau.
Không mất tính tổng quát

Mình chỉ nói sơ thôi mong bạn hiểu cho mình