K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔADE và ΔCDB có 

DE=DB

\(\widehat{ADE}=\widehat{CDB}\)

DA=DC

Do đó: ΔADE=ΔCDB

Xét tứ giác ABCE có 

D là trung điểm của AC

D là trung điểm của BE

Do đó:ABCE là hình bình hành

Suy ra: AE//BC

b: ta có: ΔENB vuông tại N

mà ND là đường trung tuyến

nên ND=DB=DE=BE/2

Xét tứ giác EDCB có 

A là trung điểm của đường chéo DB

A là trung điểm của đường chéo EC

Do đó: EDCB là hình bình hành

Suy ra: ED//BC

hay \(\widehat{ADE}=\widehat{ABC};\widehat{AED}=\widehat{ACB}\)

a: Xét ΔADE và ΔCDB có 

DA=DC

\(\widehat{ADE}=\widehat{CDB}\)

DE=DB

DO đó: ΔADE=ΔCDB

Xét tứ giác ABCE có 

D là trung điểm của AC

D là trung điểm của BE

Do đó:ABCE là hình bình hành

Suy ra: AE//BC

b: Xét ΔENB có

D là trung điểm của EB

M là trung điểm của EN

Do đó: DM là đường trung bình

=>DM//BN

hay BN\(\perp\)EN

Ta có: ΔENB vuông tại N

mà ND là đường trung tuyến

nên ND=BD

27 tháng 12 2021

a: Xét tứ giác ABCE có

D là trung điểm của AC

D là trung điểm của BE

Do đó: ABCE là hình bình hành

Suy ra: AE//BC

29 tháng 1 2021

Xét tam giác ADE và tam giác ABC có:

 ^A chung

 ^AED = ^ACB (gt)

=> Tam giác ADE \(\sim\) tam giác ABC (g - g)

=> \(\dfrac{AD}{AB}=\dfrac{DE}{BC}=\dfrac{AE}{AC}\)( các cạnh tương ứng tỉ lệ)

Thay số: \(\dfrac{AD}{15}=\dfrac{DE}{100}=\dfrac{20}{8}\)

=> AD = 37.5 (cm) và DE = 250  (cm)

 

23 tháng 5 2018

a)Áp dụng định lí pytago vào tam giác ABC vuông tại A, ta có

BC^2=AB^2+AC^2

=>BC^2=4^2+3^2

=>BC^2=16+9=25

=>BC=căn25=5 (cm)

vậy,BC=5cm

b)Xét tam giác ABC và AED có

AB=AE(gt)

 là góc chung

AC=AD(gt)

=>tam giác ABC=tam giác AED(c-g-c)

Xét tam giác AEB có:Â=90*;AE=AB

=>tam giác AEB vuông cân tại A

Vậy tam giác AEB vuông cân

c)Ta có EÂM+BÂM=90*

      mà BÂM+MÂB=90*

=>EÂM=MÂB

mà MÂB=AÊD(cm câu b)

=>EÂM=AÊD hay EÂM=AÊM

xét tam giác EAM có: EÂM=AÊM(cmt)

=>tam giác EAM cân tại M

=>ME=MA                  (1)

Ta có góc ACM+CÂM=90*

mà BÂM+CÂM=90*

=>góc ACM=BÂM

mà góc ACM=góc ADM( cm câu b)

=>góc ADM=DÂM

Xét tam giác MAD có góc ADM=DÂM(cmt)

=>tam giác ADM cân tại M

=>MA=MD                   (2)

 Từ (1) và (2) suy ra MA=ME=MD

ta có định lí:trong 1 tam gáic vuông, đg trung truyến ứng với cạnh huyền bằng nửa cạnh huyền

=>MA=1/2ED

=>MA là đg trung tuyến ứng với cạnh ED

Vậy MA là đg trung tuyến của tam giác ADE

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:a) BD là đường trung trực của AE.b) AD<DCc) Ba điểm E, D, F thẳng hàngBài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.a) Tính BCb) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCBc) Trên tia đối của tia DB lấy điểm E sao cho...
Đọc tiếp

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:

a) BD là đường trung trực của AE.

b) AD<DC

c) Ba điểm E, D, F thẳng hàng

Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.

a) Tính BC

b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB

c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông

d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF

Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:

a) Tam giác ANC là tam giác cân

b) NC vuông góc BC

c) Tam giác AEC là tam giác cân

d) So sánh BC và NE

Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:

a) Góc ACE= góc ABD

b) Tam giác ABD = tam giác ECA

c) Tam giác AED là tam giác vuông cân

0