K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2

(x + 1)/111 = (y + 2)/222 = (z + 3)/333

⇒ (3x + 3)/333 = (2y + 4)/444 = (z + 3)/333

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

(3x + 3)/333 = (2y + 4)/444 = (z + 3)/333 = (3x + 3 + 2y + 4 + z + 3)/(333 + 444 + 333) = (989 + 10)/1110 = 999/1110 = 9/10

*) (x + 1)/111 = 9/10

⇒ x + 1 = 9/10 .111

⇒ x + 1 = 999/10

⇒ x = 999/10 - 1

⇒ x = 989/10

*) (y + 2)/222 = 9/10

⇒ y + 2 = 9/10 . 222

⇒ y + 2 = 999/5

⇒ y = 999/5 - 2

⇒ y = 989/5

*) (z + 3)/333 = 9/10

⇒ z + 3 = 9/10 . 333

⇒ z + 3 = 2997/10

⇒ z = 2997/10 - 3

⇒ z = 2967/10

Vậy x = 989/10; y = 989/5; z = 2967/10

15 tháng 8 2017

\(\dfrac{x+1}{111}=\dfrac{y+2}{222}=\dfrac{z+4}{333}\\ \Leftrightarrow\dfrac{3\left(x+1\right)}{3\cdot111}=\dfrac{2\left(y+2\right)}{2\cdot222}=\dfrac{z+4}{333}\\ \Leftrightarrow\dfrac{3x+3}{333}=\dfrac{2y+4}{444}=\dfrac{z+4}{333}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{3x+3}{333}=\dfrac{2y+4}{444}=\dfrac{z+4}{333}=\dfrac{3x+3+2y+4+z+4}{333+444+333}=\dfrac{3x+2y+z+11}{1110}=\dfrac{999+11}{1110}=\dfrac{1110}{1110}=1\\ \Rightarrow\left\{{}\begin{matrix}\dfrac{3x+3}{333}=1\Rightarrow3x+3=333\Rightarrow3x=330\Rightarrow x=110\\\dfrac{2y+4}{444}=1\Rightarrow2y+4=444\Rightarrow2y=440\Rightarrow y=220\\\dfrac{z+4}{333}=1\Rightarrow z+4=333\Rightarrow z=329\end{matrix}\right.\)

Vậy ...

15 tháng 8 2017

thank you!Nhưng bn giúp mk giải bài 2 nhé!ok

10 tháng 7 2016

\(\frac{\left(x+1\right)3}{111\cdot3}=\frac{3x+3}{333}\)

\(\frac{\left(y+2\right)2}{222\cdot2}=\frac{2y+4}{444}\)

Ta có: \(\frac{3x+3}{333}=\frac{2y+4}{444}=\frac{z+3}{333}\)

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{3x+3}{333}=\frac{2y+4}{444}=\frac{z+3}{333}=\frac{3x+3+2y+4+z+3}{333+444+333}=\frac{\left(3x+2y+z\right)+\left(3+4+3\right)}{1110}=\frac{989+10}{1110}=\frac{999}{1110}=\frac{9}{10}\)

\(\frac{3x+3}{333}=\frac{9}{10}\Rightarrow3x+3=\frac{2997}{10}\Rightarrow3x=\frac{2967}{10}\Rightarrow x=\frac{989}{10}=98,9\)

Tìm y và z tương tự nhé! Ko hiểu chỗ nào thì nói tớ!

10 tháng 7 2016

thanks:)

13 tháng 7 2017

a, Áp dụng TCDTSBN ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

=> a = b = c 

b, Áp dung TCDTSBN ta có:

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)

=> x = y = z

Vậy \(\frac{x^{333}.y^{666}}{z^{999}}=\frac{z^{333}.z^{666}}{z^{999}}=\frac{z^{999}}{z^{999}}=1\)

c, ac = b2 => \(\frac{a}{b}=\frac{b}{c}\left(1\right)\)

ab = c2 => \(\frac{b}{c}=\frac{c}{a}\left(2\right)\)

Từ (1) và (2) suy ra \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)

Áp dụng TCDTSBN ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

=> a = b = c

Vậy \(\frac{b^{333}}{c^{111}.a^{222}}=\frac{b^{333}}{b^{111}.b^{222}}=\frac{b^{333}}{b^{333}}=1\)

13 tháng 7 2017

a, Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

Vậy a = b ; a = c ; c = a => a=b=c

b, Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)

=> x = y; y = z; z = x => x = y = z

\(\Rightarrow\frac{x^{333}.y^{666}}{z^{999}}=\frac{z^{333}.z^{666}}{z^{999}}=\frac{z^{333+666}}{z^{999}}=\frac{z^{999}}{z^{999}}=1\)

c,

Theo đề bài:

ac = bb <=> bb/a = c

ab = cc <=> ab/c = c

=> bb/a = ab/c

=> bbc = aab 

=> bc = ab

Mà cc = ab => cc = bc => b = c

ac/b = b

cc/a = b

=> ac/b = cc/a

=> aac = bcc

=> aa = bc

Mà bc = cc => aa = cc => a = c

=> a = b = c

\(\Rightarrow\frac{b^{333}}{c^{111}.a^{222}}=\frac{b^{333}}{b^{111}.b^{222}}=\frac{b^{333}}{b^{333}}=1\)

16 tháng 10 2021

\(3x=2y\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x}{10}=\dfrac{y}{15};7y=5z\Rightarrow\dfrac{y}{5}=\dfrac{z}{7}\Rightarrow\dfrac{y}{15}=\dfrac{z}{21}\\ \Rightarrow\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}\)

Áp dụng t/c dtsbn:

\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{x-y+2z}{10-15+42}=\dfrac{-111}{37}=-3\\ \Rightarrow\left\{{}\begin{matrix}x=-30\\y=-45\\z=-63\end{matrix}\right.\)

16 tháng 10 2021

Thks nha

23 tháng 11 2017

ta có:\(5x-3y=4y\Rightarrow5x=7y\Leftrightarrow x=\dfrac{7y}{5}\)(1)

\(4y=3z+10x\Rightarrow4y=3z+14y\)

\(\Leftrightarrow-10y=3z\Leftrightarrow z=\dfrac{-10y}{3}\) (2)

thay (1), (2) vào 3x+2y+z=989, ta co:

\(\dfrac{21y}{5}+2y-\dfrac{10y}{3}=989\Leftrightarrow\dfrac{43y}{15}=989\)

\(\Leftrightarrow y=345\)

thay y=345 vào (1), (2) ta dc: \(\left\{{}\begin{matrix}x=\dfrac{7\times345}{5}=483\\z=\dfrac{-10\times345}{3}=-1150\end{matrix}\right.\)

vậy \(\left\{{}\begin{matrix}x=483\\y=345\\z=-1150\end{matrix}\right.\)

23 tháng 11 2017

bạn làm hộ vài câu hỏi của mình chưa trả lời trong ngày hôm nay với please mình sẽ ticks cho nha!Pleaseeoeo