Chứng minh : \(m+\frac{\sqrt{3}}{n}\)là số vô tỉ ( với m ; n là số hữu tỉ n khác 0)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giả sử \(\sqrt{1+\sqrt{2}}=m\) ( m là số hữu tỉ )
\(\Rightarrow\sqrt{2}=m^2-1\)nên \(\sqrt{2}\)là số hữu tỉ ( vô lí )
vậy ...
b) giả sử \(m+\frac{\sqrt{3}}{n}=a\)( a là số hữu tỉ ) thì \(\frac{\sqrt{3}}{n}=a-m\Rightarrow\sqrt{3}=n\left(a-m\right)\)nên là số hữu tỉ ( vô lí )
vậy ....
Ta có : \(\sqrt{2}\)là số vô tỉ
\(\sqrt{3}\)là số vô tỉ
\(\Rightarrow\sqrt{2}+\sqrt{3}\)là số vô tỉ ( đpcm )
b) tương tự :
\(\hept{\begin{cases}\sqrt{2}vôti\\\sqrt{3}vôti\\\sqrt{5}vôti\end{cases}}\)
\(\Rightarrow\sqrt{2}+\sqrt{3}+\sqrt{5}\)vô tỉ
Bài làm:
a) Vì 1 là số hữu tỉ, \(\sqrt{2}\) là số vô tỉ
=> \(1+\sqrt{2}\) vô tỉ
\(\Rightarrow\sqrt{1+\sqrt{2}}\) vô tỉ
b) Vì n là số hữu tỉ, \(\sqrt{3}\) vô tỉ
=> \(\frac{\sqrt{3}}{n}\) vô tỉ, mà m hữu tỉ
=> \(m+\frac{\sqrt{3}}{n}\) vô tỉ
Giả sử \(\sqrt{3}-\sqrt{2}\) là số hữu tỉ
nên \(\sqrt{3}-\sqrt{2}=\dfrac{p}{q}\left(q\ne0\right)\)
\(\Leftrightarrow\dfrac{p^2}{q^2}=5-2\sqrt{6}\)
\(\Leftrightarrow\dfrac{p^2}{q^2}-5=-2\sqrt{6}\)(vô lý)
Vậy: \(\sqrt{3}-\sqrt{2}\) là số vô tỉ
Đề thiếu điều kiện n là số tự nhiên nhé
\(a)\)\(\sqrt{1+2+3+4+...+\left(n-1\right)+n+\left(n-2\right)+...+3+2+1}\)
\(=\)\(\sqrt{\frac{n\left(n-1\right)}{2}+n+\frac{n\left(n-1\right)}{2}}\)
\(=\)\(\sqrt{\frac{2n\left(n-1\right)}{2}+n}\)
\(=\)\(\sqrt{n\left(n-1\right)+n}\)
\(=\)\(\sqrt{n\left(n-1+1\right)}\)
\(=\)\(\sqrt{n^2}\)
\(=\)\(\left|n\right|\)
Mà n là số tự nhiên nên \(n\ge0\)\(\Rightarrow\)\(\left|n\right|=n\)
Vậy \(\sqrt{1+2+3+4+...+\left(n-1\right)+n+\left(n-1\right)+...+3+2+1}=n\) ( đpcm )
Chúc bạn học tốt ~
Giả sử căn 3 không phải số vô tỉ suy ra:
tồn tại số m và n sao cho căn 3 = m/n (m,n là nguyên tố cùng nhau)
khi đó 3n^2 = m^2
=> m chia hết 3, đặt m=3p ( p là số nguyên)
thay m = 3p ta có
3n^2 = 9p^2
n^2 = 3p^2
=> n chia hết cho 3
=> m và n cùng chia hết cho 3
mâu thuẫn với giả thiết ban đầu , m/n tối giản , m,n là nguyên tố cùng nhau
=> căn 3 là số vô tỉ
Giả sử \(2\sqrt{2}+\sqrt{3}=x\left(x\in Q\right)\)
\(\Leftrightarrow\left(2\sqrt{2}+\sqrt{3}\right)^2=x^2\\ \Leftrightarrow11+4\sqrt{6}=x^2\\ \Leftrightarrow\sqrt{6}=\dfrac{x^2-11}{4}\)
Vì \(\sqrt{6}\) là số vô tỉ nên \(\dfrac{x^2-11}{4}\) là số vô tỉ \(\Rightarrow\) \(x^2\) là số vô tỉ, \(\Rightarrow x\) là số vô tỉ (vô lý)
Vậy \(2\sqrt{2}+\sqrt{3}\) là số vô tỉ
Giả sử \(\sqrt{3}-\sqrt{2}=x\left(x\in Q\right)\)
\(\Leftrightarrow\left(\sqrt{3}-\sqrt{2}\right)^2=x^2\\ \Rightarrow5-2\sqrt{6}=x^2\\ \Rightarrow\sqrt{6}=\dfrac{5-x^2}{2}\)
Vì \(\sqrt{6}\) là số vô tỉ nên \(\dfrac{5-x^2}{2}\Rightarrow\) \(x^2\)là số vô tỉ, \(\Rightarrow x\) là số vô tỉ (vô lý)
Vậy \(\sqrt{3}-\sqrt{2}\) là số vô tỉ
Bn tham khảo nè:
giả sử x + y = a với a là số hữu tỉ
=> y = a - x
mà a và x là hữu tỉ nên a - x cũng hữu tỉ
(dễ dàng chứng minh điểu này bằng cách đặt a = p/q và x = m/n)
=> y cũng hữu tỉ
vô lý