Chứng minh rằng với mọi số nguyên dương a,b thì:ab(a2-1)(b2+2) chia hết cho 9
giúp mình vs mình đang vội
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(\frac{2a+2b}{ab+1}\) là bình phương của 1 số nguyên thì 2a + 2b chia hết cho ab + 1; mà ab + 1 chia hết cho 2a + 2b => ab + 1 = 2b + 2a
=> \(\frac{2a+2b}{ab+1}\)=1 = 12
......................?
mik ko biết
mong bn thông cảm
nha ................
P = ( a - b ) ( a - c ) ( a - d ) ( b - c ) ( b - d ) ( c - d )
Xét 4 số a,b,c,d khi chia cho 3, tồn tại 2 số có cùng số dư khi chia cho 3, hiệu của chúng chia hết cho 3 nên P chia hết cho 3
Xét 4 số a,b,c,d khi chia cho 4
- nếu tồn tại 2 số cùng số dư khi chia cho 4 thì hiệu của chúng chia hết cho 4, do đó P chia hết cho 4
- nếu 4 số ấy có số dư khác nhau khi chia cho 4 ( là 0,1,2,3 ) thì 2 số có dư là 0 và 2 có hiệu chia hết cho 2, 2 số có số dư là 1 và 3
có hiệu chia hết cho 2. do đó P chia hết cho 4
#)Giải :
Trong 4 số a,b,c,d có ít nhất 2 số có cùng số dư khi chia cho 3
Trong 4 số a,b,c,d : Nếu có 2 số có cùng số dư khi chia cho 4 thì hiệu hai số đó sẽ chia hết cho 4
Nếu không thì 4 số dư theo thứ tự 0,1,2,3 <=> trong 4 số a,b,c,d có hai số chẵn, hai số lẻ
Hiệu của hai số chẵn và hai số lẻ trong 4 số đó chia hết cho 2
=> Tích trên chia hết cho 3 và 4
Mà ƯCLN ( 3; 4 ) = 1 nên ( a - b ) ( a - c ) ( a - d ) ( b - c ) ( b - d ) ( c - d ) chia hết cho ( 3 . 4 ) = 12
#~Will~be~Pens~#
\(=\left(9-1-4k\right)\left(9+1+4k\right)\)
\(=\left(8-4k\right)\left(4k+10\right)\)
\(=8\left(2-k\right)\left(2k+5\right)⋮8\)
Lời giải:
Sử dụng bổ đề: Một số chính phương �2x2 khi chia 3 dư 0 hoặc 1.
Chứng minh:
Nêú �x chia hết cho 33 thì �2⋮3x2⋮3 (dư 00)
Nếu �x không chia hết cho 33. Khi đó �=3�±1x=3k±1
⇒�2=(3�±1)2=9�2±6�+1⇒x2=(3k±1)2=9k2±6k+1 chia 33 dư 11
Vậy ta có đpcm
-----------------------------
Áp dụng vào bài:
TH1: Nếu �,�a,b chia hết cho 33 thì hiển nhiên ��(�2+2)(�2+2)⋮9ab(a2+2)(b2+2)⋮9
TH1: Nếu �⋮3,�̸⋮3a⋮3,b⋮3
⇒�2⇒b2 chia 33 dư 11
⇒�2+3⋮3⇒b2+3⋮3
⇒�(�2+3)⋮9⇒a(b2+3)⋮9
⇒��(�2+3)(�2+3)⋮9⇒ab(a2+3)(b2+3)⋮9
TH3: Nếu �̸⋮3;�⋮3a⋮3;b⋮3
⇒�2⇒a2 chia 33 dư 11
⇒�2+2⋮3⇒a2+2⋮3
⇒�(�2+2)⋮9⇒b(a2+2)⋮9
⇒��(�2+2)(�2+2)⋮9⇒ab(a2+2)(b2+2)⋮9
TH4: Nếu �̸⋮3;�̸⋮3a⋮3;b⋮3
⇒�2,�2⇒a2,b2 chia 33 dư 11
⇒�2+2⋮3;�2+2⋮3⇒a2+2⋮3;b2+2⋮3
⇒��(�2+2)(�2+2)⋮9⇒ab(a2+2)(b2+2)⋮9
đây bạn