Cho △ABC cân tại A trên BC lấy D và E sao cho BD = CE. Chứng minh △ADE cân.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh được tam giác ABD = tam giác ACE (c-g-c) => AD = AE
Từ đó tam giác ADE cân tại A.
Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
Do đó: ΔABD=ΔACE
=>AD=AE
a: Xét ΔDBM vuông tại D và ΔECN vuông tại E có
BD=CE
\(\widehat{B}=\widehat{C}\)
Do đó: ΔDBM=ΔECN
b: Xét ΔDME vuông tại D và ΔEND vuông tại E có
MD=EN
ED chung
Do đó: ΔDME=ΔEND
c: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{B}=\widehat{C}\)
BD=CE
Do đó: ΔABD=ΔACE
Suy ra: AD=AE
hay ΔADE cân tại A
tam giác ABC cân =>góc B=góc C
=>góc ABD=góc ACE (dựa vào 2 góc kề bù)
Xét tam giác ABD và tam giác ACE có
AB=AC(tam giác ABC cân)
góc ABD= góc ACE(cmt)
BD=CE(GT)
=>tam giác ABD = tam giác ACE (c-g-c)
=>AD=AE(2 cạnh tương ứng)
=>tam giác ADE cân tại A
Hình vẽ:
Giải:
Vì tam giác \(ABC\) cân tại \(A\):
\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)
\(\Rightarrow\widehat{ABD}=\widehat{ACE}\) ( góc bù )
Xét \(\Delta ABD\) và \(\Delta ACE\) có:
\(AB=AC \) \(\left(gt\right)\)
\(\widehat{ABD}=\widehat{ACE}\) \(\left(cmt\right)\)
\(BD=CE \) \(\left(gt\right)\)
Do đó: \(\Delta ABD=\Delta ACE\) \(\left(c.g.c\right)\)
\(\Rightarrow AD=AE\) ( cặp cạnh tương ứng )
\(\Rightarrow\Delta ADE\) cân tại \(A\).
Bài làm
Bạn tự vẽ hình nhé
Vì tam giác ABCABC cân tại A:
⇒ˆABC=ˆACB⇒ABC^=ACB^
⇒ˆABD=ˆACE⇒ABD^=ACE^ ( góc bù )
Xét ΔABDΔABD và ΔACEΔACE có:
AB=ACAB=AC (gt)
ˆABD=ˆACEABD^=ACE^ (cmt)
BD=CEBD=CE (gt)(gt)
Do đó: ΔABD=ΔACEΔABD=ΔACE (c.g.c)(c.g.c)
⇒AD=AE⇒AD=AE ( cặp cạnh tương ứng )
⇒ΔADE⇒ΔADE cân tại A
a: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE
=>ΔADE cân tại A
b: ΔABC cân tại A có AM là trung tuyến
nên AM vuông góc BC
=>AM vuông góc DE
ΔADE cân tại A
có AM là đường cao
nên AM là phân giác của góc DAE
Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
Do đó: ΔABD=ΔACE
=>AD=AE
theo đầu bài ta có góc abc=góc acb
mà góc ABD+ABC =180(kề bù)
góc ACE+ACB =180 (kề bù)
suy ra góc ABD =ACE
xét tam giác ABD và tam giác ACE
AB=AC(gt)
góc ABD=ACE
BD=CE(gt)
Do đó tam giác ABD=tam giác ACE (c.g.c)
nên AD=AE (2 cạnh tương ứng)
suy ra tam giác ADE cân
a: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó:ΔABD=ΔACE
Suy ra: AD=AE
hay ΔADE cân tại A
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
c: Xét ΔAHB vuôg tại H và ΔAKC vuông tại K có
AB=AC
\(\widehat{HAB}=\widehat{KAC}\)
Do đó: ΔAHB=ΔAKC
Suy ra:BH=CK
d: Xét ΔADE có AH/AD=AK/AE
nên HK//DE
Xét \(\Delta\)ABD và \(\Delta\)ACE có :
AB = AC ( gt )
\(\widehat{ABC}=\widehat{ACB}\) ( \(\Delta ABC\) cân tại A )
BD = CE ( gt )
\(\Rightarrow\) \(\Delta ABD=\Delta ACE\left(c.g.c\right)\)
\(\Rightarrow AD=AE\) ( 2 cạnh tương ứng )
\(\Rightarrow\) \(\Rightarrow\Delta ADE\) cân tại A ( đpcm )
Xét \(\Delta ABD\) và \(\Delta ACE\) có:
\(AB=AC\) (vì là hai cạnh bên trong tam giác cân)
\(\widehat{ABD}=\widehat{ACE}\) (vì là hai góc ở đáy trong tam giác cân)
\(BD=CE\left(gt\right)\)
\(\Rightarrow\Delta ABD=\Delta ACE\left(c.g.c\right)\)
\(\Rightarrow AD=AE\) (2 cạnh tương ứng)
Hay ΔADE cân tại A
Do ∆ABC cân tại A (gt)
⇒ AB = AC và ∠B₁ = ∠C₁
Xét ∆ABD và ∆ACE có:
AB = AC (cmt)
∠B₁ = ∠C₁ (cmt)
BD = CE (gt)
⇒ ∆ABD = ∆ACE (c-g-c)
⇒ AD = AE (hai cạnh tương ứng)
⇒ ∆ADE cân tại A