Các bạn giúp mik với ạ!!!
Cho x ϵ Z và x + ( x + 1 ) + ... + 122 + 123 = 123. Tìm x . Vế trái của đẳng thức trên có bao nhiêu số hạng?
mik cần gấp nhé. Hãy làm ơn!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+.......+\dfrac{1}{x\cdot\left(x+1\right)}=\dfrac{122}{123}\)
\(\Leftrightarrow1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+......+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{122}{123}\)
\(\Leftrightarrow1-\dfrac{1}{x+1}=\dfrac{122}{123}\)
\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{123}\)
\(\Leftrightarrow x=122\)
Ta có : 50 + 49 + ... + ( x + 1 ) + x = (50 - x) . n / 2 = 0
( 50 - x ) . n = 0
Do n khác 0 nên 50 - x = 0
x = 50 - 0 = 50
ĐKXĐ: x>=0 và 1-y>=0
=>x>=0 và y<=1
\(\sqrt{x\left(1-y\right)}=\sqrt{x}\cdot\sqrt{1-y}\) nó sẽ đúng khi cả hai biểu thức \(\sqrt{x};\sqrt{1-y}\) đều cùng xác định trên R
Do đó: Đẳng thức này sẽ đúng với \(\left\{{}\begin{matrix}x>=0\\y< =1\end{matrix}\right.\)