Cho tam giác ABC vuông tại A, có AB=6cm , AC=8cm . Vẽ đường cao AH (H thuộc BC) và tia phân giác BK (K thuộc AC).
a/ tìm độ dài các đoạn thẳng BC,AK,CK
b/Chứng minh: tam giác ABC đồng dạng tam giác HBA .Chứng minh : AB^2=BH.BC.
c/ tìm tỉ số đồng dạng của 2 tam giác ABCvà tam giác HBA
a/ \(BC=\sqrt{AB^2+AC^2}=10cm\)
BK là pg \(\widehat{ABC}\)
\(\Rightarrow\dfrac{AK}{CK}=\dfrac{AB}{BC}=\dfrac{6}{10}=\dfrac{3}{5}\)
=> \(\dfrac{AK}{3}=\dfrac{CK}{5}=\dfrac{AC}{8}=1\)
=> AK = 3cm ; CK = 5 cm
b/ Xét t/g ABC và t/g HBA có
\(\widehat{ABC}\) chung
\(\widehat{BAC}=\widehat{AHB}=90^o\)
=> t/g ABC ~ t/g HBA
=> \(\dfrac{AB}{HB}=\dfrac{BC}{AB}\)
=> \(AB^2=BC.HB\)
c/ \(\dfrac{BC}{AC}=\dfrac{10}{6}=\dfrac{5}{3}\)
t/g ABC ~ t/g HBA vs tỉ số đồng dạng là 5/3