A=1x2+2x3+3x4+...+49x50 tính tổng a
B=\(\dfrac{2n-3}{n-1}\)tìm n để b nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1/1 - 1/2 + 1/2 - ....-1/50 = 1-1/50 = 49/50
B = 1/2 . (1/3 - 1/7 + 1/7 -.....-1/27) = 1/2. (1/3 - 1/27)
B = 1/2. 8/27 = 4/27
A
phân tích :
= 2 + 6 + 12 + 20 + 30 ... + 2450
quy luật : 2 số liền nhau hơn kém nhau là các số chẵn liên tiếp :
6 - 2 = 4 ; 12 - 6 = 6 ; 20 - 12 = 8
và bây giờ dùng tính chất dãy số để tính
nhé !
A×3=1.2.3+2.3.3+3.4.3+.......+49.50.3
A×3=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+.......+49.50.(51-48)
A×3=1.2.3-1.2.0+2.3.4-2.3.1+........+49.50.51-49.50.48
Ta thấy ngoài số 49.50.51 thì các số còn lại đều bị giản ước như 1.2.3 với 2.3.1;....nên
A×3=49.50.51
A×3=124950
A=124950:3
A=41650.
Vậy A=41650.
uses crt;
var c,d:real;
i,n,j:integer;
begin
clrscr;
write('Nhap n='); readln(n);
i:=1;
c:=0;
while i<=n do
begin
i:=i+1;
c:=c+1/i;
end;
writeln('C=',c:4:2);
d:=0;
j:=1;
while j<=49 do
begin
d:=d+1/(j*(j+1));
inc(j);
end;
writeln('D=',d:4:2);
readln;
end.
A=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
A=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
A=\(1-\frac{1}{50}\)
A=\(\frac{49}{50}\)
Ta có công thức \(\frac{a}{b.c}=\frac{a}{c-b}.\left(\frac{1}{b}-\frac{1}{c}\right)\)
Dựa vào công thức trên, ta có
\(\frac{1}{1.2}=\frac{1}{2-1}.\left(1-\frac{1}{2}\right)\)
\(\frac{1}{2.3}=\frac{1}{3-2}.\left(\frac{1}{2}-\frac{1}{3}\right)\)
............................................
\(\frac{1}{49.50}=\frac{1}{50-49}.\left(\frac{1}{49}-\frac{1}{50}\right)\)
\(A=1.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{49}-\frac{1}{50}\right)\)
\(\Rightarrow A=1-\frac{1}{50}=\frac{49}{50}\)
chắc chắn bạn ạ, ai thấy đúng hì ủng hộ nha
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}=1-\frac{1}{50}=\frac{49}{50}\)\(\frac{49}{50}\)
Ta có :
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(A=1-\frac{1}{50}\)
\(A=\frac{49}{50}\)
Vậy \(A=\frac{49}{50}\)
Chúc bạn học tốt ~
= 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/49 - 1/50
= 1/1 - 1/50
= 49/50
Yêu cầu đề là gì vậy bạn?