Cho tam giác ABC vuông cân tại A. Gọi M là trung điểm của BC. Lấy điểm D trên đoạn thẳng AB, đường thẳng vuông góc với MD tại M cắt AC tại E. Cmr:MD=ME.b) trên tia đối của tia CA lấy điểm K sao cho CK=BD, ĐK cắt BC tại I. Cmr:I là trung điểm của DK.c) đường vuông góc với ĐK tại I cắt AM tại S. Cmr: SC vuông góc với AK.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta thấy \(\widehat{ECN}=\widehat{ACB}\) (Hai góc đối đỉnh)
Tam giác ABC cân tại A nên \(\widehat{ACB}=\widehat{ABC}\Rightarrow\widehat{ECN}=\widehat{DBM}\)
Xét tam giác vuông BDM và CEN có:
BD = CE
\(\widehat{ECN}=\widehat{DBM}\) (cmt)
\(\Rightarrow\Delta BDM=\Delta CEN\) (Cạnh góc vuông và góc nhọn kề)
\(\Rightarrow BM=CN\) (Hai cạnh tương ứng)
b) Do \(\Delta BDM=\Delta CEN\Rightarrow MD=NE\)
Ta thấy MD và NE cùng vuông góc BC nên MD // NE
Suy ra \(\widehat{DMI}=\widehat{ENI}\) (Hai góc so le trong)
Xét tam giác vuông MDI và NEI có:
MD = NE
\(\widehat{DMI}=\widehat{ENI}\)
\(\Rightarrow\Delta MDI=\Delta NEI\) (Cạnh góc vuông và góc nhọn kề)
\(\Rightarrow MI=NI\)
Xét tam giác KMN có KI là đường cao đồng thời trung tuyến nên KMN là tam giác cân tại K.
c) Ta có ngay \(\Delta ABK=\Delta ACK\left(c-g-c\right)\Rightarrow\widehat{ABK}=\widehat{ACK}\) (1) và BK = CK
Xét tam giác BMK và CNK có:
BM = CN (cma)
MK = NK (cmb)
BK = CK (cmt)
\(\Rightarrow\Delta BMK=\Delta CNK\left(c-g-c\right)\Rightarrow\widehat{MBK}=\widehat{NCK}\) (2)
Từ (1) và (2) suy ra \(\widehat{ACK}=\widehat{NCK}\)
Chúng lại là hai góc kề bù nên \(\widehat{ACK}=\widehat{NCK}=90^o\)
Vậy \(KC\perp AN\)
a: ΔABC vuông cân tại A
mà AM là đường trung tuyến
nên AM là phân giác của góc BAC
=>\(\widehat{BAM}=\widehat{CAM}=\dfrac{90^0}{2}=45^0\)
Xét tứ giác ADME có \(\widehat{EMD}+\widehat{EAD}=90^0+90^0=180^0\)
nên ADME là tứ giác nội tiếp
=>\(\widehat{MAD}=\widehat{MED};\widehat{MDE}=\widehat{MAE}\)
mà \(\widehat{MAD}=\widehat{MAE}=45^0\)
nên \(\widehat{MED}=\widehat{MDE}=45^0\)
=>MD=ME
b: Kẻ DF\(\perp\)AB(F\(\in\)BC)
mà AC\(\perp\)AB
nên DF//AC
DF//AC
=>\(\widehat{DFB}=\widehat{ACB}\)
mà \(\widehat{ACB}=\widehat{ABC}\)
nên \(\widehat{DFB}=\widehat{FBD}\)
=>ΔDFB cân tại D
=>DF=DB
mà DB=CK
nên DF=CK
Xét tứ giác DFKC có
DF//CK
DF=CK
Do đó: DFKC là hình bình hành
=>DK cắt FC tại trung điểm của mỗi đường
=>I là trung điểm chung của DK và FC