K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2017

a, VP = (a + b)3 - 3ab(a + b) 

= a3 + 3a2b + 3ab2 + b3 - 3a2b - 3ab2

= a3 + b3 = VT 

b, VP = (a - b)3 + 3ab(a - b)

= a3 - 3a2b + 3ab2 - b3 + 3a2b - 3ab2

= a3 - b3 = VT

4 tháng 9 2021

a. Ta có

\(VP=\left(a+b\right)^3-3ab\left(a+b\right)\)

\(=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2\)

\(=a^3+b^3\) ( đpcm )

b. Ta có

\(VP=\left(a-b\right)^3+3ab\left(a-b\right)\)

\(=a^3-3a^2b+3ab^2-b^3+3a^2b-3ab^2\)

\(=a^3-b^3\) ( đpcm )

16 tháng 8 2021

2

Ta có:

VP=(a+b)3−3ab(a+b)VP=(a+b)3-3ab(a+b)

     =a3+b3+3ab(a+b)−3ab(a+b)=a3+b3+3ab(a+b)-3ab(a+b)

     =a3+b3=VT(dpcm)

16 tháng 8 2021

1, \(VT=a^2+b^2=a^2+b^2+2ab-2ab=\left(a+b\right)^2-2ab=VP\left(đpcm\right)\)

12 tháng 9 2016

a) Biến đổi vế phải ta có::

\(\left(a+b\right)^3-3ab\left(a+b\right)=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2=a^3+b^3=VT\)

=>đpcm

b) Biến đổi vế phải ta có:

\(\left(a-b\right)^3+3ab\left(a-b\right)=a^3-3a^2b+3ab^2-b^3+3a^2b-3ab^2=a^3-b^3=VT\)

=>đpcm

12 tháng 9 2016

cj oi so ko nhan tin voi e zay

2 tháng 9 2020

a. (a-b)^2 = (a-b)(a-b) = a^2 - ab - ba + b^2 = a^2 - 2ab + b^2

b. (a+b)^3= (a+b)(a+b)(a+b) = (a^2 + 2ab + b^2)(a + b) = a^3 + a^2b + 2a^2b + 2ab^2 + ab^2 + b^3 = a^3 + 3a^2b + 3b^2a + b^3

c. (a-b)^3= (a - b)(a-b)(a-b) = (a^2 - 2ab + b^2)(a - b) = a^3 - a^2b - 2a^2b + 2ab^2 + b^2a - b^3 = a^3 - 3a^2b + 3ab^2 - b^3

e. (a-b) ( a^2 + ab +b^2) = a^3 + a^2b + b^2a - ba^2 - ab^2 - b^3 = a^3 - b^3

g. ( a-b) ( a+b) = a^2 +ab -ab - b^2 = a^2 - b^2

19 tháng 7 2016

Xét VP : \(\left(a+b\right)^3-3ab\left(a+b\right)=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2=a^3+b^3\)

vậy VT=VP

=> \(a^3+b^3=\left(-5\right)^3-30.\left(-5\right)=25\)

19 tháng 7 2016

Xét VP: \(\left(a-b\right)^3+3ab\left(a-b\right)=a^3-3a^2b+3ab^2-b^2+3a^2b-3ab^2=a^3-b^3\)

=> VT=VP

17 tháng 6 2015

a) \(a^3+b^3=\left(a^3+b^3+3a^2b+3ab^2\right)-3a^2b-3ab^2=\left(a+b\right)^3-3ab\left(a+b\right)\)=> điều phải c/m

b) \(a^3-b^3=\left(a^3-b^3-3a^2b+3ab^2\right)+3a^2b-3ab^2=\left(a-b\right)^3+3ab\left(a-b\right)\)=> đpcm

c) \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)=-5^3-3.6.\left(-5\right)=-35\)

 

chứng mih rằng

a)  a^3 + b^3= (a+b)^3 - 3ab (a+b)

b) a^3 - b^3= (a-b)^3 +3ab (a-b)

áp dụng: tính a^3 +b^3, biết a.b= 6 ; a+b = -5

Được cập nhật {timing(2017-08-24 22:01:41)}

Toán lớp 8 Hằng đẳng thức

Nguyễn Thị BÍch Hậu 17/06/2015 lúc 13:34
Thống kê hỏi đáp
 Báo cáo sai phạm

a) a3+b3=(a3+b3+3a2b+3ab2)−3a2b−3ab2=(a+b)3−3ab(a+b)=> điều phải c/m

b) a3−b3=(a3−b3−3a2b+3ab2)+3a2b−3ab2=(a−b)3+3ab(a−b)=> đpcm

c) a3+b3=(a+b)3−3ab(a+b)=−53−3.6.(−5)=−35

 Đúng 5 Học toán ngu ngu ấy mà đã chọn câu trả lời này.