Cho tam giác ABC cân tại A. Kẻ AH vuống góc BC (H thuộc BC)
A) Chứng minh tam giác AHB=tam giác AHC
B) Kẻ HM vuông góc AB ( M thuộc AB), HN vuông góc AC ( N thuộc AC )
C) Kẻ MK vuông góc AC ( K thuộc AC ) Chững minh MN là tia phân giác của HMK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét ∆ ABH và ∆AHC có:
+AH chung
+ ∠AHB= ∠AHC(=90*)
+AB=AC(△ ABC cân)
=> △AHB=△AHC(ch-cgv)
=>BH=HC(2 cạnh tương ứng)
b) Xét △ HEB và △HFC có:
+ ∠BEH= ∠CFH(=90*)
+HB=HC(cmt)
+ ∠B= ∠C(△ABC cân)
=> △HEB=△HFC(ch-cgnhon)
a) Có AB=AC=10cm
=> \(\Delta\)ABC cân tại A
b) Có: \(\hept{\begin{cases}\widehat{AHB}=\widehat{AHC}=90^o\\\widehat{ABH}=\widehat{ACH}\end{cases}}\)
=> \(\widehat{BAH}=\widehat{CAH}\)=> AH là phân giác \(\widehat{BAC}\)
Ta có: AB=AC (gt)
AH chung
\(\widehat{BAH}=\widehat{CAH}\left(cmt\right)\)
=> \(\Delta BAH=\Delta CAH\)
c) Có: \(\hept{\begin{cases}\widehat{MBH}=\widehat{NCH}\\\widehat{BMH}=\widehat{HNC}=90^o\\BH=CH\left(\Delta AHB=\Delta ACH\right)\end{cases}\Rightarrow\Delta BHM=\Delta CHN}\)
d) \(BH=\frac{1}{2}BC=\frac{12}{2}=6\left(cm\right)\)
\(AH=\sqrt{AB^2-BH^2}=\sqrt{10^2-6^2}=8\left(cm\right)\)
e) Ta có: \(\hept{\begin{cases}\widehat{OBC}=90^o-\widehat{ABC}\\\widehat{OCB}=90^o-\widehat{ACB}\end{cases}}\)
mà \(\widehat{ABC}=\widehat{ACB}\Rightarrow\widehat{OBC}=\widehat{OCB}\)
\(\Rightarrow\Delta\)OBC cân tại O
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
=>HB=HC
b: BH=CH=12/2=6cm
=>AC=căn AH^2+HC^2=10cm
c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
góc DAH=góc EAH
=>ΔADH=ΔAEH
=>HD=HE
=>ΔHDE cân tại H
. + vì tam giác ABC là tam giác cân
=> AB=AC ( hai cạnh bên bằng nhau)
Lại có: vì góc AHC bằng 90o (gt) (1)
Mà: AHB+ AHC= 180o ( hai góc kề bù)
Từ (1) và (2) ta suy ra:
AHB= 90o và tam giác AHB là tam giác vuông
a) xét tam giác vuông ABH và tam giác ACH:
AB= AC ( cmt)
Và AHB= AHC= 90o ( cmt)
=> tam giác ABH= tam giác ACH( ch-gv)
Do đó: BH = CH ( hai cạnh tương ứng)
Vậy: H là trung điểm của BC ( đpcm)
( mình chỉ làm được câu a thoii, sorry bạn nhiều nha) 😍😘
CHÚC BẠN HỌC TỐT NHA!
a) Xét \(\Delta AHB\)và \(\Delta AHC\)có :
\(\widehat{AHB}=\widehat{AHC}\left(=90^o\right)\)
\(AB=AC\)\((\Delta ABC\)cân \()\)
AH chung
\(\Rightarrow\Delta AHB=\Delta AHC\left(ch-cgv\right)\)
\(\Rightarrow HB=HC\)( 2 cạnh tương ứng )
\(\Rightarrow\)H là trung điểm của BC
b) Xét \(\Delta MBH\)và \(\Delta NCH\)có :
\(BM=CN\left(gt\right)\)
\(\widehat{B}=\widehat{C}\)\((\Delta ABC\)cân \()\)
\(BH=HC\left(cmt\right)\)
\(\Rightarrow\Delta MBH=\Delta NCH\left(c.g.c\right)\)
\(\Rightarrow\widehat{BMH}=\widehat{CNH}\)( 2 góc tương ứng )
mà \(\widehat{BMH}=90^o\left(gt\right)\)
\(\Rightarrow\widehat{CNH}=90^o\)
\(\Rightarrow HN\perp AC\)
a: Xet ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: \(BC=\sqrt{15^2+20^2}=25\left(cm\right)\)
AH=15*20/25=12(cm)
c: ΔAHB vuông tại H có HM vuông góc AB
nên AM*AB=AH^2
ΔAHC vuông tại H có HN vuông góc AC
nên AN*AC=AH^2=AM*AB
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
b: Đề yêu cầu gì bạn ơi?
c:
Ta có: MK\(\perp\)AC
HN\(\perp\)AC
Do đó: MK//HN
Xét ΔAMH vuông tại M và ΔANH vuông tại N có
AH chung
\(\widehat{MAH}=\widehat{NAH}\)(ΔAHB=ΔAHC)
Do đó: ΔAMH=ΔANH
=>HM=HN
=>\(\widehat{HMN}=\widehat{HNM}\)
mà \(\widehat{KMN}=\widehat{HNM}\)(hai góc so le trong, HN//MK)
nên \(\widehat{KMN}=\widehat{HMN}\)
=>MN là phân giác của góc KMH