tìm các số nguyên x,y,z thoả mạn x/6=14/-y=z/60=2/3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy $x^2+y^2+z^2\geq 0$ với mọi $x,y,z$
Do đó $x^2+y^2+z^2=-14$ là vô lý
PT vô nghiệm.
\(x^2+y^2+z^2=4x-2y+6=-14\)
⇔ \(x^2-4x+4+y^2+2y+1+z^2-6z+9=0\)
⇔ \(\left(x-2\right)^2+\left(y+1\right)^2+\left(z-3\right)^2=0\)
⇔ \(\left\{{}\begin{matrix}\left(x-2\right)^2\\\left(y+1\right)^2\\\left(z-3\right)^2\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}x=2\\y=-1\\z=3\end{matrix}\right.\)
\(\dfrac{x}{y}=\dfrac{x+y}{y+z}=\dfrac{y}{z}\Rightarrow xz=y^2\)
\(\left(y+2\right)\left(4xz+6y-3\right)=n^2\)
\(\Rightarrow\left(y+2\right)\left(4y^2+6y-3\right)=n^2\)
Gọi \(d=ƯC\left(y+2;4y^2+6y-3\right)\)
\(\Rightarrow4y^2+6y-3-\left(y+2\right)\left(4y-2\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
\(\Rightarrow y+2\) và \(4y^2+6y-3\) nguyên tố cùng nhau
Mà \(\left(y+2\right)\left(4y^2+6y-3\right)\) là SCP \(\Rightarrow y+2\) và \(4y^2+6y-3\) đồng thời là SCP
\(\Rightarrow4y^2+6y-3=k^2\)
\(\Leftrightarrow\left(4y+3\right)^2-21=\left(2k\right)^2\)
\(\Rightarrow\left(4y+3-2k\right)\left(4y+3+2k\right)=21\)
Giải pt ước số trên ra \(y=2\) là số nguyên dương duy nhất thỏa mãn
Thế vào \(xz=y^2=4\Rightarrow\left(x;z\right)=\left(1;4\right);\left(4;1\right);\left(2;2\right)\)
Vậy \(\left(x;y;z\right)=\left(1;2;4\right);\left(4;2;1\right);\left(2;2;2\right)\)
Ta có: \(\left(x-y\right)^3+\left(y-z\right)^2+2015|x-z|=2017\)
Đặt \(\hept{\begin{cases}x-y=a\\y-z=b\end{cases}\left(a,b\in Z\right)}\) thì ta có
\(a^3+b^2+2015|a+b|=2017\)
+ Nếu a lẻ b lẻ thì a + b là số chẵn \(\Rightarrow\)VT là số chẵn mà VP là số lẻ nên không tồn tại a, b thỏa đề bài.
+ Nếu a lẻ b chẵn thì a + b là số lẻ \(\Rightarrow\)VT là số chẵn mà VP là số lẻ nên không tồn tại a, b thỏa đề bài.
+ Nếu a chẵn b lẻ thì a + b là số lẻ \(\Rightarrow\)VT là số chẵn mà VP là số lẻ nên không tồn tại a, b thỏa đề bài.
+ Nếu a chẵn b chẵn thì a + b là số chẵn \(\Rightarrow\)VT là số chẵn mà VP là số lẻ nên không tồn tại a, b thỏa đề bài.
Vậy không tồn tại a, b nguyên thỏa đề bài hay là không tồn tại x, y, z nguyên dương thỏa đề bài.
Ta có: \(\dfrac{x}{6}=\dfrac{14}{-y}=\dfrac{-14}{y}=\dfrac{z}{60}=\dfrac{2}{3}\Rightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\cdot6=4\left(tm\right)\\y=-14:\dfrac{2}{3}=-21\left(tm\right)\\z=\dfrac{2}{3}\cdot60=40\left(tm\right)\end{matrix}\right.\)
thỏa mạn?