K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
17 tháng 3

19 tháng 1 2016

Vi p la so nguyen to lon hoan 3 nen p co 2 dang:

                                  \(3k+1;3k+2\) (k\(\in\) N*)

Voi p=3k+1

Ta co: 2p+1=2(3k+1)+1=6k+2+1=6k+3=3(2k+1)                                                                                                 Voi (k\(\in\) N*) \(\Rightarrow\) 3(2k+1) chia het cho 3 va 3(2k+1)>3 \(\Rightarrow\) 3(2k+1) la hop so hay 2p+1 la hop so(loai)

Voi p=3k+2

Ta co: 4p+1=4(3k+2)+1=12k+8+1=12k+9=3(4k+3)

Voi (k\(\in\) N*) \(\Rightarrow\) 3(4k+3) chia het cho 3 va 3(4k+3)>3 \(\Rightarrow\) 3(4k+3) la hop so hay 4p+1 la hop so

Vay neu p va 2p+1 la so nguyen to (p>3)) thi 4p+1 la hop so voi p co dang 3k+2

TICK CHO MINH NHA !!!!!!!!

17 tháng 12 2023
Vì p là số nguyên tố lớn hơn 3 nên p \cancel{vdots} 3 ⇒ p có dạng 3k + 1 hoặc 3k + 2 ( k ∈ N** ) Xét p = 3k + 1 ⇒ 2p + 1 = 2 . ( 3k + 1 ) + 1 = 6k + 2 + 1 = 6k + 3 vdots 3 ( là hợp số ) ( Loại ) ⇒ p có dạng 3k + 2 ⇒ 4p + 1 = 4 . ( 3k  +2 ) + 1 = 12k + 8 + 1 = 12k + 9 vdots 3 ( là hợp số ) Vậy , 4p + 1 là hợp số . ok bạn 
27 tháng 12 2015

Do p>3 nên p có dạng 3k+1 hoặc 3k+2

Nếu p=3k+1=> 2p+1=2(3k+1)+1=6k+2+1=6k+3=3(2k+1) chia hết cho 3 (loại)

Vậy p=3k+2

=> 4p+1=4(3k+2)+1=12k+8+1=12k+9=3(4k+3) chia hết cho 3

Vậy 4p+1 là hợp số

19 tháng 10 2016

a,p=2.

b,p=0,2,4.

c,ban tự lm

k mik nhe

13 tháng 3 2021

b, 

Khi ta xét 3 số tự nhiên liên tiếp 4p; 4p + 1; 4p + 2 thì chắc chắn sẽ có một số chia hết cho 3

p là số nguyên tố; p > 3 nên p không chia hết cho 3 => 4p không chia hết cho 3

Ta thấy 2p + 1 là số nguyên tố; p > 3 => 2p + 1 > 3 nên 2p + 1 không chia hết cho 3 => 2(2p + 1) không chia hết cho 3 -> 4p + 2 không chia hết cho 3

Vì thế 4p + 1 phải chia hết cho 3

Mà p > 3 nên 4p + 1 > 3

=> 4p + 1 không là số nguyên tố. 4p + 1 là hợp số.

10 tháng 12 2021
10000×2000?
26 tháng 11 2015

Theo bài ra ta có :

p là SNT lớn hơn 3 (1)

2p + 1 là SNT (2)

Vì p là SNT lớn hơn 3 (theo (1) ) nên p có 2 dạng : 3k+1 hoặc 3k+2 ( k là STN )

* Nếu p = 3k+1 thì :

2p+1 = 2(3k+1)+1=6k+3=3(2k+1) chia hết cho 3 hay 2p+1 chia hết cho 3 (3)

Mà p>3 => 2p+1>3 (4)

Từ (3) và (4) => 2p+1 là hợp số ( trái với (2) , loại )

Vậy p=3k+2

=> 4p+1=4(3k+2)+1=12k+9 = 3(4k+3) chia hết cho 3  hay 4p+1 chia hết cho 3 (5)

Mà p>3 => 4p+1>3 (6)

Từ (5) và (6) => 4p+1 là hợp số 

=> đpcm

11 tháng 1 2016

p là số nguyên tố lớn hơn 5 nên p có dạng 3k+1 hoặc 3k+2

+ Nếu p=3k+1 thì chia hết cho 3 => 2p+1 không phải số nguyên tố => loại

+ Vậy p có dạng 3k+2

Khi đó chia hết cho 3

Vậy 4p+1 là hợp số

tick nha

6 tháng 3 2020

Tham khảo : https://olm.vn/hoi-dap/detail/19124427990

Hok tốt !

# Chi

6 tháng 3 2020

Vì p là số nguyên tố lớn hơn 3 nên  p có dạng 3k+1; 3k+2

Nếu  p = 3k+1 thì 2p+1 = 2(3k+1) +1 = 6k + 2 +1= 6k+3 = 3(2k+1) ( vì 3 \(⋮\)3 nên 3(k+1) \(⋮\)3 => 2p+1 là hợp số trái với đề bài)

Nếu p = 3k+2 thì 4p+1 =4(3k+2) +1 = 12k + 8+ 1 = 12k+9 = 3(4k+3) ( vì .........................................................................................)

Vậy...

26 tháng 12 2015

 Vì p là số nguyên tố lớn hơn 3 nên p không chia hết cho 3 
TH1 : p chia cho 3 dư 1 
=> p = 3k + 1 ( k thuộc N*) 
=> 2p + 1 = 6k + 3 chia hết cho 3 
=> 2p + 1 không phải số nguyên tố 
=> loại 
TH2 : p chia 3 dư 2 
=> p = 3k + 2 (k thuộc N*) 
=> 4p + 1 = 12k + 9 chia hết cho 3 
=> 4p + 1 là hợp số 

AH
Akai Haruma
Giáo viên
11 tháng 10 2023

Lời giải:
Nếu $p\vdots 3$ thì $p=3$. Khi đó $2p+1=7, 4p+1=13$ đều là số nguyên tố (thỏa mãn) 

Nếu $p$ chia $3$ dư $1$. Đặt $p=3k+1$ với $k\in\mathbb{N}^*$

$\Rightarrow 2p+1=2(3k+1)+1=6k+3=3(2k+1)\vdots 3$. Mà $2p+1>3$ với mọi $p$ nên $2p+1$ không là snt (trái với giả thiết) - loại.

Nếu $p$ chia $3$ dư $2$. Đặt $p=3k+2$ với $k\in\mathbb{N}^*$

$\Rightarrow 4p+1=4(3k+2)+1=12k+9=3(4k+3)\vdots 3$. mà $4p+1>3$ với mọi $p$ nên không là snt(trái với giả thiết) - loại.

Vậy $p=3$ là đáp án duy nhất.