Cho 2 điểm A,B nằm trên 2 nửa mặt phẳng đối nhau bờ là xx'.Trên xx' lấy điểm M.Biết góc x'MA=xMB.Chứng tỏ A,MB thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\widehat{xOA}+\widehat{x'OA}=180^o\)
\(\Rightarrow\widehat{xOA} +150^o=180^o\)
\(\Rightarrow\widehat{xOA}=180^o-150^o=30^o\)
mà \(\widehat{xOB}=30^o\)
\(\Rightarrow\widehat{xOA}=\widehat{xOB}\left(=30^o\right)\)
=> Ox là tia phân giác của góc AOB
a) Vì hai tia Ox và Ox' là hai tia đối nhau mà tia Oy ≠ tia Ox,Ox'
=> Tia Oy nằm giữa hai tia Ox và Ox' ; ∠x'Ox = 180°
=> ∠x'Oy + ∠yOx = ∠x'Ox
=> 40° + ∠yOx = 180°
=> ∠yOx = 180° - 40°
=> ∠yOx = 140°
Trên cùng nửa mặt phẳng bờ chứa tia Ox có :
∠xOz < ∠xOt < ∠xOy (Vì 54° < 97° < 140°)
=> Tia Ot nằm giữa hai tia Oz và Oy (1)
b) Trên cùng một nửa mặt phẳng bờ chứa tia Ox có :
∠xOz < ∠xOt (Vì 54° < 97°)
=> Tia Oz nằm giữa hai tia Ox và Ot
=> ∠xOz + ∠zOt = ∠xOt
=> 54° + ∠zOt = 97°
=> ∠zOt = 97° - 54°
=> ∠zOt = 43°
Vì hai tia Ox và Ox' là hai tia đối nhau mà tia Ot ≠ tia Ox và tia Ox'
=> Tia Ot nằm giữa hai tia Ox và Ox'
=> ∠xOt + ∠tOx' = ∠xOx'
=> 97° + ∠tOx' = 180°
=> ∠tOx' = 180° - 97°
=> ∠tOx' = 83°
Trên cùng một nửa mặt phẳng bờ chứa tia Ox' có :
∠x'Oy < ∠x'Ot (Vì 40° < 83°)
=> Tia Oy nằm giữa hai tia Ox' và Ớt
=> 40° + ∠yOt = 83°
=> ∠yOt = 83° - 40°
=> ∠yOt = 43°
Vì ∠zOt = 43°
∠yOt = 43°
=> ∠zOt = ∠yOt (2)
Từ (1); (2) => Tia Ot là tia phân giác của ∠zOy.
Chúc bạn học tốt nhé! <3