Tính giá trị biểu thức hợp lí:
\(\dfrac{2^{19}.27^3+15.4^9.9^4}{9^4.4^{10}+12^{10}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\dfrac{2^{19}\cdot3^9+2^{18}\cdot3^9\cdot5}{2^{19}\cdot3^9+2^{20}\cdot3^{10}}=\dfrac{2^{18}\cdot3^9\left(5+2\right)}{2^{19}\cdot3^9\left(1+2\cdot3\right)}=\dfrac{1}{2}\)
\(\frac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}\)
\(=\frac{2^{19}.\left(3^3\right)^3+3.5.\left(2^2\right)^9.\left(3^2\right)^4}{\left(2.3\right)^9.2^{10}+\left(3.2^2\right)^{10}}\)
\(=\frac{2^{19}.3^9+5.2^{18}.3^9}{2^{19}.3^9+3^{10}.2^{20}}\)
\(=\frac{2^{18}.3^9\left(2+5\right)}{2^{19}.3^9\left(1+3.2\right)}\)
\(=\frac{7}{2.7}=\frac{1}{2}\)
\(H=\frac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}\)
\(H=\frac{2^{19}.\left(3^3\right)^3+3.5.\left(2^2\right)^9.\left(3^2\right)^4}{\left(2.3\right)^9.2^{10}+\left(2^2.3\right)^{10}}\)
\(H=\frac{2^{19}.3^9+3.5.2^{18}.3^8}{2^9.3^9.2^{10}+2^{20}.3^{10}}\)
\(H=\frac{2^{19}.3^9+2^{18}.5.3^9}{2^{19}.3^9+2^{20}.3^{10}}\)
\(H=\frac{2^{18}.3^9.\left(2+5\right)}{2^{19}.3^9.\left(1+2.3\right)}\)
\(H=\frac{2^{18}.3^9.7}{2^{19}.3^9.\left(1+6\right)}\)
\(H=\frac{2^{18}.3^9.7}{2^{19}.3^9.7}=\frac{1}{2}\)
\(K=\frac{4^7.2^8}{3.2^{15}.16^2-5.2^2.\left(2^{10}\right)^2}\)
\(K=\frac{\left(2^2\right)^7.2^8}{3.2^{15}.\left(2^4\right)^2-5.2^2.2^{20}}\)
\(K=\frac{2^{14}.2^8}{3.2^{15}.2^8-5.2^{22}}\)
\(K=\frac{2^{22}}{3.2^{23}-5.2^{22}}\)
\(K=\frac{2^{22}}{2^{22}.\left(3.2-5\right)}=\frac{2^{22}}{2^{22}.1}=1\)
\(=\dfrac{2^{19}.\left(3^3\right)^3-3.5.\left(2^2\right)^9.\left(3^2\right)^4}{\left(2.3\right)^9.2^{10}+\left(3.2^2\right)^{10}}=\dfrac{2^{19}.3^9-5.2^{18}.3^9}{2^{19}.3^9+2^{20}.3^{10}}=\dfrac{2^{18}.3^9\left(2-5\right)}{2^{19}.3^9\left(1+6\right)}=\dfrac{-3}{2.7}=-\dfrac{3}{14}\)
\(B=\dfrac{2^{19}\cdot27^3+15.4^9\cdot9^4}{6^9+2^{10}\cdot3^{10}}\)
\(\Rightarrow B=\dfrac{2^{19}\cdot\left(3^3\right)^3+3\cdot5\cdot4^9\cdot\left(3^2\right)^4}{2^3\cdot3^3+\left(2\cdot3\right)^{10}}\)
\(\Rightarrow B=\dfrac{2^{19}\cdot3^9+3\cdot5\cdot4^9\cdot3^8}{\left(2\cdot3\right)^3+\left(2\cdot3\right)^{10}}\)
\(\Rightarrow B=\dfrac{2^{19}\cdot3^9+5\cdot\left(2^2\right)^9\cdot3^9}{\left(2\cdot3\right)^{13}}\)
\(\Rightarrow B=\dfrac{2^{19}\cdot3^9+5\cdot2^{18}\cdot3^9}{2^{13}\cdot3^{13}}\)
\(\Rightarrow B=\dfrac{2\cdot\left(2^{18}\cdot3^9\right)+5\cdot\left(2^{18}\cdot3^9\right)}{2^{13}\cdot3^{13}}\)
\(\Rightarrow B=\dfrac{\left(2^{18}\cdot3^9\right)\cdot\left(2+5\right)}{2^{13}\cdot3^{13}}\)
\(\Rightarrow B=\dfrac{2^{18}\cdot3^9\cdot7}{2^{13}\cdot3^{13}}=\dfrac{2^{13}\cdot2^5\cdot3^9\cdot7}{2^{13}\cdot3^9\cdot3^4}\)
\(\Rightarrow B=\dfrac{2^5\cdot7}{3^4}\)
\(\dfrac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}\\ =\dfrac{2^{19}.3^9+5.2^{18}.3^9}{2^9.3^9+2^{20}.3^{10}}\\ =\dfrac{2^{18}.3^9\left(2+5\right)}{2^9.3^9\left(2^{11}.3+1\right)}\\ =\dfrac{2^9.7}{2^9.12+1}=\dfrac{7}{13}\)
A= \(\dfrac{10.11.\left(1+5.5+7.7\right)}{11.12.\left(1+5.5+7.7\right)}=\dfrac{10}{12}=\dfrac{5}{6}\)
\(\frac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}=\frac{2^{19}.3^9+5.2^{18}.3^9}{2^{10}.6^9+2^{10}.6^{10}}=\frac{2^{18}.3^9.\left(2+5\right)}{2^{10}.6^9\left(1+6\right)}=\frac{2^{18}.3^9.7}{2^{10}.6^9.7}=2^8.\left(\frac{1}{2}\right)^9=2^8.\frac{9}{2^9}=\frac{1}{2}.9=\frac{9}{2}\)Vậy C=\(\frac{9}{2}\)
\(=\dfrac{2^{19}\cdot3^9-3\cdot3^8\cdot2^{18}\cdot5}{2^{19}\cdot3^9+2^{20}\cdot3^{10}}=\dfrac{-3^{10}\cdot2^{18}}{2^{19}\cdot3^9\cdot7}=-\dfrac{3}{14}\)
\(A=\frac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}\)
\(A=\frac{2^{19}.\left(3^3\right)^3+3.5.\left(2^2\right)^9.\left(3^2\right)^4}{\left(2.3\right)^9.2^{10}+\left(2^2.3\right)^{10}}\)
\(A=\frac{2^{19}.3^9+3.5.2^{18}.3^8}{2^9.3^9.2^{10}+2^{20}.3^{10}}\)
\(A=\frac{2^{19}.3^9+5.2^{18}.3^9}{2^{19}.3^9+2^{20}.3^{10}}\)
\(A=\frac{2^{18}.3^9.\left(2+5\right)}{2^{18}.3^9.\left(2+2^2.3\right)}\)
\(A=1.\frac{2+5}{2+4.3}\)
\(A=\frac{7}{14}=\frac{1}{2}\)
Vậy \(A=\frac{1}{2}\)