Tìm x
\(\frac{x-1}{2015}-\frac{1}{2015}=\frac{10-2x}{2015}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x-4}{2015}-\frac{1}{2015}=\frac{10-2x}{2015}\)
\(\Rightarrow\frac{x-4}{2015}-\frac{10-2x}{2015}=\frac{1}{2015}\)
\(\Rightarrow\frac{x-4-\left(10-2x\right)}{2015}=\frac{1}{2015}\)
\(\Rightarrow\frac{\left(x+2x\right)-\left(4+10\right)}{2015}=\frac{1}{2015}\)
\(\Rightarrow\frac{3x-14}{2015}=\frac{1}{2015}\)
\(\Rightarrow\left(3x-14\right).2015=2015\)
\(\Rightarrow3x-14=1\) ( bớt cả 2 vế đi 2015 lần )
\(\Rightarrow3x=15\)
\(\Rightarrow x=5\)
Vậy \(x=5\)
mẫu số = nhau nên tử số = nhau
x-4 -1 = 10-2x
3x = 10+4+1
3x = 15
x = 5
\(2^x+2^{x+4}=272\)
\(< =>2^x.\left(1+2^4\right)=272\)
\(< =>2^x.17=272\)
\(< =>2^x=272:17\)
\(< =>2^x=16\)
\(< =>2^x=2^4\)
\(=>x=4\)
\(\Rightarrow\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\right)x=\left(\frac{2016}{1}-1\right)+\left(\frac{2017}{2}-1\right)+...+\left(\frac{4030}{2015}-1\right)\)
\(\Rightarrow\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\right)x=\frac{2015}{1}+\frac{2015}{2}+...+\frac{2015}{2015}\)
\(\Rightarrow\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\right)x=2015.\left(1+\frac{1}{2}+...+\frac{1}{2015}\right)\)
=> x = 2015
\(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\right).x+2015=\frac{2016}{1}+\frac{2017}{2}+\frac{2018}{3}+...+\frac{4030}{2015}\)
\(\Rightarrow\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\right).x=\left(\frac{2016}{1}-1\right)+\left(\frac{2017}{2}-1\right)+...+\left(\frac{4030}{2015}-1\right)\)
\(\Rightarrow\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\right).x=\frac{2015}{1}+\frac{2015}{2}+...+\frac{2015}{2015}=2015.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\right)\)\(\Rightarrow x=2015\)
\(\frac{x-1}{2015}-\frac{1}{2015}=\frac{10-2x}{2015}\)
\(\Rightarrow x-1-1=10-2x\)
\(\Rightarrow x-2=10-2x\)
\(\Rightarrow-2x+x=10+2\)
\(\Rightarrow-x=12\Rightarrow x=-12\)