Cho đường tròn (O;R) đường kính AB. Gọi M là 1 điểm thuộc AB. Vẽ dây CD qua M và vuông góc với AB. Gọi I là điểm đối xứng với C qua A. CMR: I luôn nằm trên 1 đường thẳng cố định khi M di chuyển trên đoạn AB.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
Khó đấy
a) Ta có: góc AME = 90 độ (góc nt chắn nửa đt)
=> AN vuông góc EM tại M
Mặt khác: ACN = 90 độ (góc nt chắn nửa đt)
=> AE vuông góc CN tại C
Xét tam giác ANE có : NC và EM là các đường cao
=> B là trực tâm tam giác ANE
=> AB vuông góc NE (t/c trực tâm tam giác)
b) Ta có M là trung điểm AN (t/c đối xứng)
và M cũng là trung điểm EF (t/c đói xứng)
Do đó tứ giác AENF là hính bình hành
=> FA song song NE
Mà NE vuông góc AB (cmt)
=> FA vuông góc AB tại A thuộc (O)
Vậy FA là tiếp tuyến của đt (O)
c)Ta có M là trung điểm AN (t/c đối xứng)
AN vuông góc BF tại M (góc AMB =90 độ)
=> BF là đường trung trực của AN
Xét tam giác AFB và tam giác NFB có
1/ BF cạnh chung
2/ FA = FN (t/c đ trung trực)
3/ BA = BN (t/c đ trung trực)
=> tam giác AFB = tam giác NFB
=> góc FAB = góc FNB
Mà FAB = 90 độ (cmt)
=> góc FNB bằng 90 độ
=> FN vuông góc với BN tại N thuộc (B;BN)
Mà BN = AB
=> FN là tiếp tuyến cửa đt (B;AB)