Cho tam giác ABC vuông tại A có AC=6cm, góc B =30o
a) Giải tam giác vuông ABC
b) Vẽ đường cao Ah và trung tuyến Am của tam giác ABC. Tính diện tích tam giá AHM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: ΔABC vuông tại A
nên \(\widehat{B}+\widehat{C}=90^0\)
hay \(\widehat{C}=60^0\)
Xét ΔABC vuông tại A có
\(AC=AB\cdot\tan30^0\)
\(=2\sqrt{3}\left(cm\right)\)
\(\Leftrightarrow BC=4\sqrt{3}\left(cm\right)\)
a: \(\widehat{C}=60^0\)
\(AC=6\sqrt{3}\left(cm\right)\)
\(BC=12\sqrt{3}\left(cm\right)\)
a)xét \(\Delta\)ABC vuông tại A có
\(\widehat{B}+\widehat{C}=90'\Rightarrow\widehat{C}=90'-30'=60'\)
\(\sin C=\frac{AB}{BC}\Rightarrow BC=\frac{AB}{\sin B}=\frac{6}{\sin30'}=12\left(cm\right)\)
\(\tan B=\frac{AC}{AB}\Rightarrow AC=AB.\tan B=6.\tan30'=2\sqrt{3}\left(cm\right)\)
b)Xét \(\Delta ABC\left(\widehat{BAC}=90'\right)AHvuôngócBC\)
\(AB^2=BC.HB\Rightarrow HB=\frac{AB^2}{BC}=\frac{6^2}{12}=3cm\)
\(AH.BC=AB.AC\)
\(\Rightarrow AH=\frac{AB.AC}{BC}=6.2\sqrt{3}=12\sqrt{3}cm\)(1)
VÌ AM LÀ ĐƯỜNG TRUNG TUYẾN CỦA TG ABC NÊN
\(MB=MC=\frac{BC}{2}=\frac{12}{2}=6cm\)
MÀ\(MB=MH+HB\)
\(\Rightarrow MH=MB-HB=6-3=3cm\)(2)
TỪ (1)và (2) SUY RA
\(S\Delta AHM=\frac{1}{2}AH.HM=\frac{1}{2}.12\sqrt{3}.3=18\sqrt{3}\approx31.18\left(cm^2\right)\left(do\Delta AHMvuôngtạiH\right)\)
a , Δ A B C , A ⏜ = 90 0 , A H ⊥ B C g t ⇒ A H = B H . C H = 4.9 = 6 c m Δ A B H , H ⏜ = 90 0 g t ⇒ tan B = A H B H = 6 4 ⇒ B ⏜ ≈ 56 , 3 0 b , Δ A B C , A ⏜ = 90 0 , M B = M C g t ⇒ A M = 1 2 B C = 1 2 .13 = 6 , 5 c m S Δ A H M = 1 2 M H . A H = 1 2 .2 , 5.6 = 7 , 5 c m 2