Cho tam giác ABC có A là góc tù. I là giao điểm của của các tia phân giác trong của tam giác ABC. Kẻ IM vuông góc với AB,IN vuông góc với BC,IK vuông góc với AC. Qua A vẽ đường thẳng song song với MN cắt BC tại H cắt NK tại E và đường thẳng song song với NK cắt BC tại Q, cắt MN tại D. Chứng minh DE là đường trung bình của tam giác AQH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có AD // NK, đường tròn (MNK) tiếp xúc với AC tại K, suy ra ^ADM = ^MNK = ^AKM
Suy ra 4 điểm A,M,K,D cùng thuộc một đường tròn. Tương tự với 4 điểm A,M,K,E
Từ đó 5 điểm A,K,M,D,E cùng thuộc một đường tròn
Do vậy ^NDE = ^NKM = ^BNM. Vì 2 góc ^NDE, ^BNM so le trong nên DE // BC hay PQ // BC (đpcm).
la sao eo hieu anh oi em moi lop 5 anh lop 7 saoe lam dc ha troi,voi lai bai do cau hoi giong em nhung bai em la tim ti so % cua AI va IC anh lam dc ko giai giup em voi anh.Anh ko giai dc xung dang lam gi la lop 7 ha anh,em noi co dung ko????EM NOI VAY LA DUNG CHINH XAC,DUNG CCMNR!!!!!!!!!!!!:))))))
Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng:
a) AM=IK
b) Tam giác AMI bằng tam giác IKC
c) AI=IC
Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR
a) BD= CE
b) tam giác OEB bằng tam giác ODC
c) AO là tia phân giác cua góc BAC
Được cập nhật 41 giây trước (20:12)
Gọi T là giao điểm của MN và AC. Qua K kẻ đường thẳng song song với AH cắt BC tại S và cắt AN tại R.
Ta dễ dàng chứng minh 3 cặp tam giác bằng nhau:
\(\Delta IAM=\Delta IAK,\Delta IBM=\Delta IBN,\Delta ICN=\Delta ICK\)
\(\Rightarrow AM=AK,BM=BN,CN=CK\)
\(\Rightarrow\dfrac{MA}{MB}.\dfrac{NB}{NC}.\dfrac{KC}{KA}=1\)
Áp dụng định lý Menelaus cho tam giác ABC, cát tuyến MNT, ta có:
\(\dfrac{MA}{MB}.\dfrac{NB}{NC}.\dfrac{TC}{TA}=1\)
Do đó \(\dfrac{KC}{KA}=\dfrac{TC}{TA}\) \(\Rightarrow\dfrac{TA}{KA}=\dfrac{TC}{KC}\) (1)
Áp dụng định lý Thales trong tam giác ANT, ta có:
\(\dfrac{TA}{KA}=\dfrac{TN}{RK}\) (2)
Áp dụng định lý Thales trong tam giác CNT, ta có:
\(\dfrac{TC}{KC}=\dfrac{TN}{KS}\) (3)
Từ (1), (2) và (3), suy ra \(RK=KS\) (4)
Áp dụng định lý Thales cho tam giác NKR, ta có:
\(\dfrac{AE}{RK}=\dfrac{NE}{NK}\) (5)
Áp dụng định lý Thales cho tam giác NKS, ta có:
\(\dfrac{EH}{SK}=\dfrac{NE}{NK}\) (6)
Từ (4), (5) và (6), suy ra \(AE=EH\) \(\Rightarrow\) E là trung điểm AH.
CMTT \(\Rightarrow\) DE là đường trung bình của tam giác AQH (đpcm)