tìm x
a)\(\dfrac{6}{-x}\)=\(\dfrac{x}{-24}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>6/x=x/24
=>x^2=144
=>x=12 hoặc x=-12
b: =>x(1-7/12+3/8)=5/24
=>x*19/24=5/24
=>x=5/24:19/24=5/19
c: =>(x-1/3)^2=1+3/4+1/2=9/4
=>x-1/3=3/2 hoặc x-1/3=-3/2
=>x=11/6 hoặc x=-7/6
d: =>(x-3)^2=16
=>x-3=4 hoặc x-3=-4
=>x=-1 hoặc x=7
e: =>9/x=-1/3
=>x=-27
f: =>x-1/2=0 hoặc -x/2-3=0
=>x=1/2 hoặc x=-6
a) x=24/35 -2/7
x=14/35
b) x=7/8+5/6
x=41/24
c) x-11/5=3/5
x=11/5+3/5
x=14/5
tick cho mình nhé
\(\dfrac{6}{x}=\dfrac{24}{x-7}\left(x\ne0;x\ne27\right)\)
suy ra
`6(x-27)=24x`
`=>6x-162-24x=0`
`=>-18x=162`
`=>x=-9(tm)`
\(\dfrac{6}{x}=\dfrac{24}{x-27}\left(dkxd:x\ne0,x\ne27\right)\)
\(\Leftrightarrow\dfrac{6}{x}-\dfrac{24}{x-27}=0\)
\(\Leftrightarrow\dfrac{6\left(x-27\right)-24x}{x\left(x-27\right)}=0\)
\(\Leftrightarrow6x-162-24x=0\)
\(\Leftrightarrow-18x=162\)
\(\Leftrightarrow x=--9\)
Giải:
a) \(\dfrac{-1}{5}\le\dfrac{x}{8}\le\dfrac{1}{4}\)
\(\Rightarrow\dfrac{-8}{40}\le\dfrac{5x}{40}\le\dfrac{10}{40}\)
\(\Rightarrow5x\in\left\{0;\pm5;10\right\}\)
\(\Rightarrow x\in\left\{0;\pm1;2\right\}\)
b) \(\dfrac{4}{x-6}=\dfrac{y}{24}=\dfrac{-12}{18}\)
\(\Rightarrow\dfrac{4}{x-6}=\dfrac{-12}{18}\)
\(\Rightarrow-12.\left(x-6\right)=4.18\)
\(\Rightarrow-12x+72=72\)
\(\Rightarrow-12x=72-72\)
\(\Rightarrow-12x=0\)
\(\Rightarrow x=0:-12\)
\(\Rightarrow x=0\)
\(\Rightarrow\dfrac{y}{24}=\dfrac{-12}{18}\)
\(\Rightarrow y=\dfrac{-12.24}{18}=-16\)
c) \(\dfrac{x+46}{20}=x.\dfrac{2}{5}\)
\(\dfrac{x+46}{20}=\dfrac{2x}{5}\)
\(\Rightarrow5.\left(x+46\right)=2x.20\)
\(\Rightarrow5x+230=40x\)
\(\Rightarrow5x-40x=-230\)
\(\Rightarrow-35x=-230\)
\(\Rightarrow x=-230:-35\)
\(\Rightarrow x=\dfrac{46}{7}\)
Chúc bạn học tốt!
7) vì \(\dfrac{x}{5}\)=\(\dfrac{y}{6}\)=\(\dfrac{z}{7}\)và x-y+z=36
Nên theo tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}\)=\(\dfrac{y}{6}\)=\(\dfrac{z}{7}\)=\(\dfrac{x-y+z}{5-6+7}\)=\(\dfrac{36}{6}\)=6
\(\Rightarrow\)x=6.5=30
y=6.6=36
z=6.7=42
vậy x=30,y=36,z=42
`(5/6 -x+7/12) : ( 11/24 -1/8)=11/36`
`=>(5/6 -x+7/12) : (11/24 - 3/24)=11/36`
`=>(5/6 -x+7/12) : 8=11/36`
`=>5/6 -x+7/12=11/36 xx 8`
`=>5/6 -x+7/12=22/9`
`=> x+7/12=5/6-22/9`
`=> x+7/12=-29/18`
`=>x=-29/18 -7/12`
`=>x=-79/36`
a) ĐKXĐ: \(x\ne-5\)
\(\Leftrightarrow7x-7=6x+30\\ \Leftrightarrow x=37\)
b) \(\Leftrightarrow25x^2=144\\ \Leftrightarrow x^2=\dfrac{144}{25}\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{12}{5}\\x=-\dfrac{12}{5}\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{x}{-2}=\dfrac{1}{-2}=\dfrac{-18}{y}=\dfrac{z}{-24}\)
=>x=1; y=36; z=12
Ta có :
\(A.B=\dfrac{24}{\sqrt{x}+6}.\dfrac{\sqrt{x}+6}{\sqrt{x}-6}\)
\(=\dfrac{24}{\sqrt{x}-6}\)
Để \(AB\le12\Leftrightarrow\dfrac{24}{\sqrt{x}-6}\le12\)
\(\Leftrightarrow\dfrac{24-12\left(\sqrt{x}-6\right)}{\sqrt{x}-6}\le0\)
\(\Leftrightarrow24-12\sqrt{x}+72\le0\)
\(\Leftrightarrow-12\sqrt{x}\le-96\)
\(\Leftrightarrow\sqrt{x}\ge8\)
\(\Leftrightarrow x\ge64\)
Vậy \(x\ge64\) thì \(AB\le12\)
6/(-x) = x/(-24)
-x² = -144
x² = 144
x = -12; x = 12
a; \(\dfrac{6}{-x}\) = \(\dfrac{x}{-24}\) (đk \(x\ne\) 0)
-\(x.x=6.\left(-24\right)\)
-\(x^2\) = - 144
\(x^2\) = - 144 : (-1)
\(x^2\) = 144
\(\left[{}\begin{matrix}x=-12\\x=12\end{matrix}\right.\)
Vậy \(x\in\) {-12; 12}