Tìm số TN có 2 chữ số biết tổng của số đó với số viết theo thứ tự ngược lại là 55 và chữ số hàng chục hơn chữ số hàng đơn vị là 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chữ số hàng chục là a, chữ số hàng đơn vị là b
a - b =3
ab = 30 + bb
ba = bb +3
ab + ba = 55
30 + bb + bb + 3 = 55
2 bb +33 = 55
2 bb = 22
bb = 11
b =1
a = 1 + 3 = 4
Số tự nhiên đó là ab = 41
Gọi số đó là ab
Theo đề ta có:
ab + ba = 143
Suy ra 10( a+b ) + a + b = 143 => 11 ( a + b ) = 143
=> a + b = 13 ; b - a = 3
=> a = 5; b = 8
Vậy số đó là 58
Gọi số cần tìm có dạng là \(\overline{ab}\)
2 lần chữ số hàng chục bé hơn chữ số hàng đơn vị là 1 nên b-2a=1
Nếu viết số đó theo thứ tự ngược lại thì được một số mới với tổng của số mới và số ban đầu là 143
=>\(\overline{ab}+\overline{ba}=143\)
=>11a+11b=143
=>a+b=13
Do đó, ta có hệ phương trình:
\(\left\{{}\begin{matrix}-2a+b=1\\a+b=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3a=-12\\a+b=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=4\\b=9\end{matrix}\right.\)
Gọi số nguyên tố có hai chữ số cần tìm là: ab (o<= b<a <=9)
Theo bài ra ta có: ab + ba = n^2 (n thuộc N*)
<=> 11a + 11b = n^2
<=> 11(a+b) = n^2
=>n^2 chia hết cho 11 => n^2 chia hết cho 121 thì mới tồn tại n
=> (a+b) chia hết cho 11
Mà o< (a+b)<=18
=> a+b = 11
Do a>b => (a,b) = (9,2) , (8,3) , (7,4) , (6,5)
Mặt khác ; ab nguyên tố => ab=83
Vậy số cần tìm là 83
Gọi số đó là ab
Theo đề ta có:
ab + ba = 143
Suy ra 10( a+b ) + a + b = 143 => 11 ( a + b ) = 143
=> a + b = 13 ; b - a = 3
=> a = 5; b = 8
Vậy số đó là 58