Cho \(\frac{x+16}{9}=\frac{y-25}{16}=\frac{z+9}{25}và2x^3-1=16\). Tính x + y + z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Quá đơn giản :
2x3-1 = 15
=> 2x3=16
=> x3 = 8
=> x =2
Thay x vào \(\frac{x+16}{9}\)
=> \(\frac{2+16}{9}=2\)
=> \(2=\frac{y-25}{16}\)
=> y-25 = 32
=> y = 57
=> \(2=\frac{z+9}{25}\)
=> z + 9 = 50
=> ...
Đ/S: ...
Từ \(\frac{9-x}{7}+\frac{11-x}{9}=2\)
\(=>\frac{9-x}{7}+\frac{11-x}{9}-2=0\)
\(=>\frac{9-x}{7}+\frac{11-x}{9}-1-1=0\)
\(=>\left(\frac{9-x}{7}-1\right)+\left(\frac{11-x}{9}-1\right)=0\)
\(=>\frac{2-x}{7}+\frac{2-x}{9}=0=>\left(2-x\right).\left(\frac{1}{7}+\frac{1}{9}\right)=0\)
Vì \(\frac{1}{7}+\frac{1}{9}\) khác 0=>2-x=0=>x=2
Theo T/c dãy tỉ số=nhau:
\(\frac{x+16}{9}=\frac{y-25}{16}=\frac{z+9}{25}=\frac{x+16+y-25+z+9}{9+16+25}\)\(=\frac{\left(x+y+z\right)+\left(16-25+9\right)}{9+16+25}=\frac{x+y+z}{50}\)
Thay x=2 vào \(\frac{x+16}{9}=>\frac{2+16}{9}=\frac{x+y+z}{50}=>\frac{x+y+z}{50}=2=>x+y+z=100\)
Vậy x+y+z=100
Đặt \(\frac{x-16}{9}=\frac{y-25}{16}=\frac{x+9}{25}=k\)
\(\Rightarrow\hept{\begin{cases}x=9k+16\\y=16k+25\\z=25k-9\end{cases}}\Rightarrow x+y+z=9k+16+16k+25+25k-9=50k+32\)
Xét 2x3-1=15
=>2x3=15+1=16
=>x3=16:2=8
=>x3=23
=>x=2
=>k=\(\frac{2-16}{9}=\frac{-14}{9}\)
=>x+y+z=\(50.\frac{-14}{9}+32=\frac{-412}{9}\)
Do 2x^3-1=15= =>2x^3=16 =>x^3m=8 =>x=2
ta co x-16/9 =y-25/16 =z+9/25 =x-16+y-25+z+25/ 9+16+25 =x+y+z-32 /50 (1)
thay x=2 vao (1) ta co 2-16/9= -14/9=x+y+z-32 /50 =>x+y+z-32 =-700/9
=>x+y+z=-412/9
2x^3-1=15 => 2x^3 = 15+1 = 16
=> x^3=16:2=8 = 2^3
=> x=2
Khi đó : y-25/16=z+9/25=x+16/9 = 2+16/9 = 2
=> y = 57 ; z = 41
=> x+y+z = 2+57+41 = 100
k mk nha