K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2017

Gọi C là giá trị của biểu thức trên

a) CMR : C chia hết cho 31

\(C=2+2^2+2^3+...+2^{99}+2^{100}\)

\(C=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{19}\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(C=2\left(1+2+2^2+2^3+2^4\right)+2^6\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)

\(C=2.31+2^6.31+...+2^{96}.31\)

\(C=31\left(2+2^6+2^{10}+...+2^{96}\right)⋮31\)(đpcm) 

b) CMR : C chia hết cho 5

\(C=2+2^2+2^3+2^4+...+2^{97}+2^{98}+2^{99}+2^{100}\)

\(=\left(2+2^3\right)+\left(2^2+2^4\right)+...+\left(2^{97}+2^{99}\right)+\left(2^{98}+2^{100}\right)\)

\(=2\left(1+2^2\right)+2^2\left(1+2^2\right)+...+2^{97}\left(1+2^2\right)+2^{98}\left(1+2^2\right)\)

=\(2.5+2^2.5+...+2^{97}.5+2^{98}.5\)

\(=5\left(2+2^2+...+2^{97}+2^{98}\right)⋮5\)(đpcm)

Vậy 2 + 2^2 + 2^3 + ...+ 2^98 + 2^99 + 2^100 vừa chia hết cho 5 vừa chia hết cho 31

14 tháng 10 2019

 \(10^6\) tận cùng là 0 \(=>10^6+2\) tận cùng là 2 \(=>10^6+2\) chia hết cho 2

7 tháng 7 2018

a=2+2^2+2^3+...+2^10

a=(2+2^2)+(2^3+2^4)+...+(2^9+2^10)

a=2.(1+2)+2^3.(1+2)+...+2^9.(1+2)

a=3.(2+2^3+...+2^9)

=> a chia hết cho 3

a=2+2^2+2^3+...+2^10

a=(2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+2^10)

a=2.(1+2+4+8+16)+2^6.(1+2+4+8+16)

a=31.(2+2^6)

=> a chia hết cho 31

chúc bạn học tốt nha

8 tháng 7 2018

Cảm ơn bạn nhiều nha

15 tháng 9 2017

1+7+7 mũ 2+7 mũ 3......+7 mũ 100.Tính a,a là tổng dãy số trên 

30 tháng 12 2017

a = 2 + 22 +23+........................+ 2100 chia hết cho 62

  a =  [ 2 + 22 +23+.24+25  ] +[ 26 +27 +28+29+210 ] + ...........+ [ 296 + 297 +298 +299 + 2100 ] 

 a= 62 + [ 210 . 62 ] + [ 215 . 62 ] + [ 220. 62 ] + ......................+ [ 2100 . 62 ] 

a=  62 . [ 210 +  215 +  220 +......................+  2100 ] 

 Mà 62 chia hết cho 62 =>    62 . [ 210 +  215 +  220 +......................+  2100 ]   hay a chia hết cho 62

30 tháng 12 2017

a = (2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+2^10)+.....+(2^96+2^97+2^98+2^99+2^100)

   = 62+2^5.(2+2^2+2^3+2^4+2^5)+......+2^95.(2+2^2+2^3+2^4+2^5)

   = 62+2^5.62+....+2^95.62

   = 62.(1+2^5+....+2^95) chia hết cho 62

=> ĐPCM

k mk nha

24 tháng 12 2021

\(A=2+2^2+2^3+.......+2^{100},\)

\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+....+\left(2^{99}+2^{100}\right)\)

\(A=\left(2+2^2\right)+2^2\left(2+2^2\right)+.....+2^{98}\left(2+2^2\right)\)

\(A=6+2^2.6+....+2^{98}.6\)

\(A=6\left(1+2^2+.......+2^{98}\right)\)

\(A=6\left(1+2^2+........+2^{98}\right)\text{⋮6}\)

24 tháng 12 2021
Giúp mik với mấy bạn
17 tháng 11 2021

con khong biet

26 tháng 12 2022

Sai hết :)