cho xy = 1
cmr \(\dfrac{4}{\left(x+y\right)^2}\)+ x\(^2\) + y\(^2\) \(\ge\)3
đẳng thức xảy ra khi nào?
Nhờ các bạn giúp mình với, mình đang cần gấp
cảm ơn nhiều ạ<3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4+y^4+\left(x+y\right)^4=2\left(x^4+y^4+2x^3y+3x^2y^2+2xy^3\right)\)
\(=2\left(\left(x^4+y^4+2x^2y^2\right)+\left(2x^3y+2xy^3\right)+x^2y^2\right)\)
\(=2\left(\left(x^2+y^2\right)^2+2xy\left(x^2+y^2\right)+x^2y^2\right)\)
\(=2\left(x^2+y^2+xy\right)^2\)
Đặt x2 + xy + y2 = a2 ; x + y = b.Ta có :
a4 = (a2)2 = (x2 + xy + y2)2 = x4 + y4 + x2y2 + 2x3y + 2xy2 + 2x2y2 = x4 + y4 + x2y2 + 2xy(x2 + y2 + xy) = x4 + y4 + x2y2 + 2xya2 (1)
mà b = x + y
=> b2 = x2 + y2 + 2xy = a2 + xy => b4 = a4 + x2y2 + 2a2xy .Từ (1) và (2) ,ta có :
2a4 = x4 + y4 + a4 + x2y2 + 2xya2 = x4 + y4 + b4.Thay a2 = x2 + xy + y2 ; b = x + y,ta có đpcm
<=>
a. Ta có : (x + y)[(x - y)2 + xy]
= (x + y)(x2 - 2xy + y2 + xy)
= (x + y)(x2 - xy + y2)
= x3 + y3
b. Ta có : x3 + y3 - xy(x + y)
= x3 + y3 - x2y - xy2
=x2(x - y) + y2(y - x)
= (x - y)(x2 - y2)
= (x - y)2.(x + y) đpcm
c) Ta có (x + y)3 - 3xy(x + y)
= (x + y)[(x + y)2 - 3xy)
= (x + y)(x2 + 2xy + y2 - 3xy)
= (x + y)(x2 - xy + y2) (đpcm)
a) VP = ( x + y )( x2 - 2xy + y2 + xy ) = ( x + y )( x2 - xy + y2 ) = x3 + y3 = VT ( đpcm )
b) VP = ( x + y )( x - y )2 = ( x + y )( x2 - 2xy + y2 ) = x3 - 2x2y + xy2 + x2y - 2xy2 + y3 = x3 + y3 - x2y - xy2 = x3 + y3 - xy( x + y ) = VT ( đpcm )
c) VP = x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2 = x3 + y3 = ( x + y )( x2 - xy + y2 ) = VT ( đpcm )
\(\left\{{}\begin{matrix}2\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)=\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\left(1\right)\\16x^5-20x^3+5\sqrt{xy}=\sqrt{\dfrac{y+1}{2}}\left(2\right)\end{matrix}\right.\).
ĐKXĐ: \(xy>0;y\ge-\dfrac{1}{2}\).
Nhận thấy nếu x < 0 thì y < 0. Suy ra VT của (1) âm, còn VP của (1) dương (vô lí)
Do đó x > 0 nên y > 0.
Với a, b > 0 ta có bất đẳng thức \(\left(a+b\right)^4\le8\left(a^4+b^4\right)\).
Thật vậy, áp dụng bất đẳng thức Cauchy - Schwarz ta có:
\(\left(a+b\right)^4\le\left[2\left(a^2+b^2\right)\right]^2=4\left(a^2+b^2\right)^2\le8\left(a^4+b^4\right)\).
Dấu "=" xảy ra khi và chỉ khi a = b.
Áp dụng bất đẳng thức trên ta có:
\(\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^4\le8\left[8\left(x^4+y^4\right)+16x^2y^2\right]=64\left(x^2+y^2\right)^2\)
\(\Rightarrow\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^2\le8\left(x^2+y^2\right)\). (3)
Lại có \(4\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)^2=4\left(\dfrac{x^6}{y^4}+2xy+\dfrac{y^6}{x^4}\right)\). (4)
Áp dụng bất đẳng thức AM - GM ta có \(\dfrac{x^6}{y^4}+xy+xy+xy+xy\ge5x^2;\dfrac{y^6}{x^4}+xy+xy+xy+xy\ge5y^2;3\left(x^2+y^2\right)\ge6xy\).
Cộng vế với vế của các bđt trên lại rồi tút gọn ta được \(\dfrac{x^6}{y^4}+2xy+\dfrac{y^6}{x^4}\ge2\left(x^2+y^2\right)\). (5)
Từ (3), (4), (5) suy ra \(4\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)^2\ge\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^2\Rightarrow2\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)\ge\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\).
Do đó đẳng thức ở (1) xảy ra nên ta phải có x = y.
Thay x = y vào (2) ta được:
\(16x^5-20x^3+5x=\sqrt{\dfrac{x+1}{2}}\). (ĐK: \(x>0\))
PT này có một nghiệm là x = 1 mà sau đó không biết giải ntn :v
\(Q=10xy^2-\frac{3}{7}xy-8xy^2-\frac{4}{7}xy-y\)
a) \(Q=\left(10xy^2-8xy^2\right)+\left(-\frac{3}{7}xy-\frac{4}{7}xy\right)-y\)
\(Q=2xy^2-xy-y\)
b) Chỗ này sửa thành Q nhá
Thay x = -7 ; y = -2 vào Q ta được :
\(Q=2\cdot\left(-7\right)\cdot\left(-2\right)^2-\left(-7\right)\cdot\left(-2\right)-\left(-2\right)\)
\(Q=2\cdot\left(-7\right)\cdot4-14+2\)
\(Q=-56-14+2\)
\(Q=-68\)
Vậy giá trị của Q = -68 khi x = -7 ; y = -2
\(=\dfrac{\sqrt{a}+2+\sqrt{a}-2}{a-4}:\dfrac{\sqrt{a}+2-2}{\sqrt{a}+2}\)
\(=\dfrac{2\sqrt{a}}{a-4}\cdot\dfrac{\sqrt{a}+2}{\sqrt{a}}=\dfrac{2}{\sqrt{a}-2}\)
\(a,=\dfrac{x^3-\left(x-1\right)\left(x^2+x+1\right)}{1-x}=\dfrac{x^3-x^3+1}{1-x}=\dfrac{1}{1-x}\\ b,=\dfrac{2x+x^2+3x+2+2-x}{\left(x+2\right)^2}=\dfrac{\left(x+2\right)^2}{\left(x+2\right)^2}=1\)
Do xy=1 nên ta biến đối vế trái để bài toán trở thành Chứng minh BĐT sau:
\(\dfrac{4}{\left(x+y\right)^2}-2\dfrac{2}{\left(x+y\right)}\left(x+y\right)+\left(x^2+2xy+y^2\right)+2\ge3\)
Hay: \(\dfrac{4}{\left(x+y\right)^2}-2\dfrac{2}{\left(x+y\right)}\left(x+y\right)+\left(x+y\right)^2\ge1\)
<==> \(\left(\dfrac{2}{x+y}-\left(x+y\right)\right)^2\ge1\) quy đồng mẫu số vế trái:
<==> \(\left(\dfrac{-\left(x^2+y^2\right)}{x+y}\right)^2\ge1\) (do xy=1)
<==> \(\left(\dfrac{\left(x^2+y^2\right)}{x+y}\right)^2\ge1\) (*)
(vì vế trái là Bình phương 1 phân số nên ta có thể bỏ qua dấu âm của tử số).
Xét vế trái của (*):
Áp dụng BĐT Bunhiacopxki cho mẫu số: (x+y) ≤ \(\sqrt{2}\cdot\sqrt{x^2+y^2}\)
(Đẳng thức khi x=y)
Khi đó Vế trái BĐT (*) : \(\left(\dfrac{\left(x^2+y^2\right)}{x+y}\right)^2\ge\left(\dfrac{\left(x^2+y^2\right)}{\sqrt{2\left(x^2+y^2\right)}}\right)^2=\dfrac{\left(x^2+y^2\right)}{2}\) (**)
Áp dụng BĐT Cô sy cho tử số (cả x2 và y2 đều là số dương) ta có:
(x2+y2) ≥ 2xy =2 (do xy=1) Đẳng thức khi x=y. ==> (**) ≥1
Đó chính là Đpcm (*). (Đẳng thức khi x=y=1).