K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2017

Bn tham khảo nhé:

f(x) =x^4-x^3-3x^2+ax+b 
x^2-x-2 = (x+1)(x-2). Gọi g(x) là thương của f(x) với (x+1)(x-2). Khi đó: 
f(x) =(x+1)(x-2).g(x) +2x-3 
f(-1) =0+2.(-1)-3 =-5; f(2) =0+2.2-3 =1 
Mặt khác f(-1)= 1+1-3-a+b =-1-a+b và f(2)=2^4-2^3-3.2^2+2a+b = -4+2a+b 
Giải hệ: -1-a+b=-5 và -4+2a+b =1 ta được a= 3; b= -1 

4 tháng 11 2019

Đa thức \(g\left(x\right)=x^2+x-6\)có nghiệm \(\Leftrightarrow x^2+x-6=0\)

\(\Leftrightarrow x^2+2x-3x-6=0\Leftrightarrow x\left(x+2\right)-3\left(x+2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)

Để đa thức f(x) = x3+ax2-bx+12 chia hết cho g(x) = x2+x-6 thì 3 và -2 cũng là hai nghiệm của đa thức x3+ax2-bx+12

Nếu x = 3 thì \(f\left(3\right)=27+9a-3b+12=0\)

\(\Leftrightarrow9a-3b=-39\Leftrightarrow3a-b=-13\)(1)

Nếu x = -2 thì \(f\left(-2\right)=-8+4a+2b+12=0\)

\(\Leftrightarrow4a+2b=-4\Leftrightarrow2a+b=-2\)(2)

Lấy (1) + (2), ta được: \(5a=-15\Leftrightarrow a=-3\)

\(\Rightarrow b=-2+3.2=4\)

Vậy a= -3; b = 4

4 tháng 11 2019

x^2+1 x^3+ax^2+bx-2 x+a x^3 +x ax^2+(b-1)x-2 ax^2 +a (b-1)x -(a+2)

Để f(x) = x3+ax2+bx-2 chia hết cho g(x) =x2+1 thì \(\left(b-1\right)x-\left(a+2\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}b-1=0\\a+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}b=1\\a=-2\end{cases}}\)

10 tháng 8 2016
a = -1 b = 20 c = -12
AH
Akai Haruma
Giáo viên
23 tháng 9 2017

Lời giải:

Để \(f(x)\) chia hết cho $g(x)$ có nghĩa là $f(x)$ viết được dưới dạng \(f(x)=g(x).Q(x)\), trong đó, \(Q(x)\) là đa thức thương.

\(\Leftrightarrow ax^3+bx^2+10x-4=(x^2+x-2)Q(x)=(x-1)(x+2)Q(x)\)

Thay \(x=1\Rightarrow a+b+6=0\Leftrightarrow a+b=-6\) \((1)\)

Thay \(x=-2\Rightarrow -8a+4b-24=0\Leftrightarrow -8a+4b=24\) \((2)\)

Từ \((1),(2)\Rightarrow a=-4,b=-2\)

Vậy \((a,b)=(-4,-2)\)

16 tháng 11 2018

a=9

b=2,8

\(\dfrac{G\left(x\right)}{P\left(x\right)}\)

\(=\dfrac{x^6-1+ax^2+bx+3}{x^2-x+1}\)

\(=\left(x-1\right)\left(x+1\right)\left(x^2+x+1\right)+\dfrac{ax^2-ax+a+\left(b+a\right)x+3-a}{x^2-x+1}\)

\(=A+\dfrac{\left(b+a\right)x+3-a}{x^2-x+1}\)

G(x) chia hêt cho P(x)=0

=>3-a=0 và a+b=0

=>a=3 và b=-3