K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2015

a)D=4x(x+y)-5y(x+y)-4x2

=4x2+4xy-5xy-5y2-4x2

=4x2-4x2+4xy-5xy-5y2

=-xy-5y2

b)E=(a-1)(x2+1)-x(y+1)+(x+y2-x+1)

=a.(x2+1)-1.(x2+1)-xy-x+x+y2-x+1

=ax2+a-x2-1-xy-x+x+y2-x+1

=ax2-x2-x+x-x-xy+y2-1+1+a

=(a-1)x2-x-xy+y2+a

14 tháng 7 2015

TRời làm vậy mà chả ai **** tốt nhất đừng làm nữa trieu dang  

8 tháng 3 2017

Làm lại :

\(E=\left(a-1\right)\left(x^2+1\right)-x\left(y+1\right)+\left(x+y^2-a+1\right)\)

\(=ax^2+a-x^2-1-xy-x+x+y^2-a+1\)

\(=ax^2+a-a-x^2-1+1-xy-x+x+y^2\)

\(=ax^2-x^2-xy+y^2\)

8 tháng 3 2017

Giúp em với chị Trần Thùy Dung 

`a, x^3 + 4x = x(x^2+4)`

`b, 6ab - 9ab^2 = 3ab(2-b)`

`c, 2a(x-1) + 3b(1-x)`

`= (2a-3b)(x-1)`

`d, (x-y)^2 - x(y-x)`

`= (x-y+x)(x-y)`

`= (2x-y)(x-y)`

26 tháng 12 2021

a: \(=\dfrac{x-z}{2}\)

b: \(=\dfrac{3x}{4y^3}\)

8 tháng 10 2016

a) \(\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\)

\(=\left(x^3+1\right)-\left(x^3-1\right)\)

\(=x^3+1-x^3+1\)

 \(=2\)

Biểu thức trên có giá trị bằng 2 với mọi x nên không phụ thuộc vào biến.

b) \(\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)-\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)-27\left(2y^3-1\right)\)

\(=\left(8x^3+27y^3\right)-\left(8x^3-27y^3\right)-27\left(2y^3-1\right)\)

\(=8x^3+27y^3-8x^3+27y^3-54y^3+27\)

\(=27\)

Biểu thức trên có giá trị bằng 27 với mọi x nên không phụ thuộc vào biến.

c) \(\left(x-1\right)^3-\left(x+4\right)\left(x^2-4x+16\right)+3x\left(x-1\right)\)

\(=x^3-3x^2+3x-1-x^3-64+3x^2-3x\)

\(=-65\)

Biểu thức trên có giá trị bằng -65 với mọi x nên không phụ thuộc vào biến.

d) \(\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2-3\left(x^2+y^2+z^2\right)\)

\(=x^2+y^2+z^2+2\left(xy+yz+xz\right)+\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2-3\left(x^2+y^2+z^2\right)\)

\(=2\left(xy+yz+xz\right)-2\left(x^2+y^2+z^2\right)+x^2-2xy+y^2+x^2-2xz+z^2+y^2-2yz+z^2\)

\(=2\left(xy+yz+xz\right)-2\left(x^2+y^2+z^2\right)+2\left(x^2+y^2+z^2\right)-2\left(xy+yz+xz\right)\)

\(=0\)

Biểu thức trên có giá trị bằng 0 với mọi x nên không phụ thuộc vào biến.

5 tháng 2 2021

undefined

5 tháng 2 2021

Giups mik vs

lolang

b: Ta có: \(\left(4x-y\right)\left(4x+y\right)-2\left(3x-2y\right)^2+\left(x-3y\right)^2\)

\(=16x^2-y^2-2\left(9x^2-12xy+4y^2\right)+x^2-6xy+9y^2\)

\(=17x^2-6xy+8y^2-18x^2+24xy-8y^2\)

\(=-x^2+18xy\)

c: Ta có: \(\left(2a-3b+4c\right)\left(2a-3b-4c\right)\)

\(=\left(2a-3b\right)^2-16c^2\)

\(=4a^2-12ab+9b^2-16c^2\)

5 tháng 8 2020

a)

\(A=\left(x+3\right)\left(x^2-3x+9\right)-\left(54+x^3\right)\)

\(=x^3-3x^2+9x+3x^2-9x+27-54-x^3\)

\(=-27\)

or

\(A=x^3+27-54-x^3=-27\)

b)

\(B=\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)

\(=8x^3+y^3-8x^3+y^3=2y^3\)

c)

\(C=\left(2x+1\right)^2+\left(1-3x\right)^2+2\left(2x+1\right)\left(3x-1\right)\)

\(=\left(2x+1+3x-1\right)^2=\left(5x\right)^2=25x^2\)

d)

\(D=\left(x-2\right)\left(x^2+2x+4\right)-\left(x+1\right)^3+3\left(x-1\right)\left(x+1\right)\)

\(=x^3-8-\left(x-1\right)^3+3\left(x-1\right)\left(x+1\right)\)

\(=6x^2-3x-10\)