Cho tam giác ABC vuông tại A. Qua điểm D trên BC kẻ đường thẳng vuông góc với BC cắt các đường thẳng AB và AC lần lượt là E và G. Cm DB. DC = DE. DG.
(Mình đang cần gấp mong các bạn giúp mình.)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em tham khảo tại link dưới đây nhé:
Câu hỏi của Lê Xuân Huy - Toán lớp 7 - Học toán với OnlineMath
Xét tứ giác AEDF có
\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)
=>AEDF là hình chữ nhật
Hình chữ nhật AEDF có AD là phân giác của \(\widehat{FAE}\)
nên AEDF là hình vuông
Xét ΔAEF và ΔDFE có
góc AEF=góc DFE
EF chung
góc AFE=góc DEF
Do đó: ΔAEF=ΔDFE
Xét ΔEDC có góc EDC=góc ECD
nên ΔEDC cân tại E
=>ED=CE=3-AE
Xét ΔFBD có góc FDB=góc FBD
nên ΔFBD cân tại F
=>FD=FB=3-AF=3-DE=3-EC
ED+FD=3-AE+3-DE=3-AE+3-EC=6-3=3cm
Tính hợp lý:
2 19 . 2 7 3 + 15. 4 9 . 9 4 9 4 . 4 10 + 1 2 10 9 4 .4 10 +12 10 2 19 .27 3 +15.4 9 = (2 19 . 2 7 3 +15. 4 9 ) + (9 4 9 4 . 4 10 +1 2 10 9 4 .4 10 ) + (12 10 +2 19 .27 3 ) = 10 + 40 + 1 = 51Chứng minh định lý:
Kẻ AH vuông góc với BC.
Ta có:
ΔADE và ΔADH có:
ΔCDG và ΔCDH có:
Nhân (1) và (2), ta được:
DE/DH . DG/DH = AD/AE . CD/CE => DE . DG = AD . CD
Vậy DB . DC = DE . DG (đpcm)