Rút gọn biểu thức: \(\frac{2\cos^2a-1}{\sin a+\cos a}\)
GIÚP MÌNH VỚI M.N!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\sin^2\alpha=x\Rightarrow\cos^2\alpha=1-\sin^2\alpha\)
\(A=x^3+\left(1-x\right)^3+3x-\left(1-x\right)=x^3+1-3x+3x^2-x^3+3x-1+x=3x^2+x\)
Vậy \(A=3\sin^4\alpha+\sin^2\alpha\). NHỚ NHA!
=\(\frac{sin^2a-2sina.cosa+cos^2a}{\left(sina-cosa\right)\left(sina+cosa\right)}=\frac{\left(sina-cosa\right)^2}{\left(sina-cosa\right)\left(sina+cosa\right)}=\frac{sina-cosa}{sina+cosa}=\frac{tana-1}{tana+1}\)
\(sin^2a+cos^2a-sin^4a-2cos^2a+sin^2a\)
\(=2sin^2a-cos^2a-sin^4a\)
\(=2sin^2a-cos^2a-\left(\frac{1-cos2a}{2}\right)^2\)
khai triển ra rồi quy đồng lên
\(=\frac{8sin^2a-4cos^2a-1+2cos2a-cos^22a}{4}\)
Mà \(2cos2a=2\left(cos^2a-1\right)=4cos^2-2\)
\(\Rightarrow\frac{8sin^2a-cos^22a-3}{4}\)
Mà \(-cos^22a=sin^22a-1=4sin^2cos^2-1\)
\(\Rightarrow\frac{8sin^2a+4sin^2a.cos^2a-4}{4}\)
\(=\frac{4sin^2a.\left(2-cos^2a\right)-4}{4}\)
\(=sin^2a\left(1+sin^2a\right)-1\)
\(=sin^4a-cos^2a\)
a)sin a-sin a.cos^2 a=sin a(1-cos^2 a)=sin a(sin^2 a)=sin^3 a
b)sin^4a+cos^4a+2sin^2acos^2a=(sin^2a+cos^2a)^2=1^2=1
\(A = \frac{{ \sin 2x }}{{1+ \cos 2x }} = \frac{{2.\sin x.\cos x }}{{1+(2\cos ^2x-1)}} = \frac{{2.\sin x.\cos x }}{{2\cos ^2x}} = \frac{{\sin x}}{{\cos x}}= tanx\)