K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2017


Phía trong của hình vuông ABCD ta dựng tam giác đều ADK. Ta có AD = AK = DK.
\(\widehat{DAK}=90^o-\widehat{KAD}=30^o\).
Do AB = AK (cùng bằng AD) nên tam giác BAK cân tại A.
Suy ra \(\widehat{ABK}=\widehat{AKB}=\frac{180^o-\widehat{BAK}}{2}=75^o\).
Suy ra \(\widehat{BKC}=90^o-\widehat{ABK}=15^o\).
Tương tự ta cũng có \(\widehat{KDC}=30^o,\widehat{DCK}=75^o,\widehat{KCB}=15^o\).
Dễ dàng chứng minh được \(\Delta ABE=\Delta BKC\left(g.c.g\right)\) nên AE = BE = BK = KC.
Từ đó ta chứng minh được \(\Delta AED=\Delta CDK\left(c.g.c\right)\).
Suy ra \(\widehat{ADE}=\widehat{KDC}=30^o\).
Suy ra tam giác CDE đều.

 

BN CÓ THỂ GIẢI THEO 1 TRONG 3 CÁCH SAU

  • CÁCH 1:
  • vẽ tam giác đều ADK(K và B cùng phía với AD)
  • =>ˆDAKDAK^=60∘60∘=>ˆKABKAB^=90∘90∘-60∘=30∘60∘=30∘.
  • ΔABKΔABK cân tại A=>ˆABK=75∘ABK^=75∘=>KBC=90∘−75∘=15∘90∘−75∘=15∘
  • tương tự 
  • ΔDKCΔDKCcân tại D=>ˆDKC=180∘−30∘2=75∘DKC^=180∘−30∘2=75∘=>ˆKCB=15∘KCB^=15∘
  • có ΔAEB=ΔBKCΔAEB=ΔBKC(g.c.g)=>AE=BK=KCΔADE=ΔKDCΔADE=ΔKDC(c.g.c)
  • =>DE=DC(1), ˆADE=ˆKDC=30∘ADE^=KDC^=30∘=>ˆEDC=60∘EDC^=60∘ (2)

(1),(2)→ΔEDC đều

  • hghh.png
  • CÁCH 2
  •  Dựng tam giác đều DME (M trong tam giác ADE)
  • MDA=15∘⇒ΔADM=ΔCDE(c.g.c)⇒AM=CE=DE=DM⇒ˆMAD=15∘⇒ˆAMD=150∘⇒ˆAME=150∘⇒ΔAMD=ΔAME(c.g.c)⇒AE=AD=AB⇒MDA^=15∘⇒ΔADM=ΔCDE(c.g.c)⇒AM=CE=DE=DM⇒MAD^=15∘⇒AMD^=150∘⇒AME^=150∘⇒ΔAMD=ΔAME(c.g.c)⇒AE=AD=AB
  • Tính được ˆBAE=60∘→BAE^=60∘→ tam giác ABE là tam giác đều
  • ​CÁCH 3
  • :-Lấy E' trong hình vuông ABCD sao cho tam giác DCE' đều.

    -Ta có: DE'=DA và góc ADE'= 30 độ.

    => góc DAE'= 75 độ. Và có góc DAB=90 độ.

    => góc BAE'= 15 độ.

    -Chứng minh tương tự, ta có góc ABE'=15 độ.

    Suy ra điểm E trùng với E'.

     Vậy tam giác DEC đều.

  • NHỚ TK MK NHA,

1 tháng 11 2017

Dài thế! nhưng thôi cho bạn 1 k

26 tháng 11 2014

A B C D F E

vì tam giác ABE đều nên góc ABE = AEB = 600

suy ra goc EBC = 90 - 30 = 600

vì tam giác BFC đều nên goc FBC = FCB = 60o

Ta có tam giác EBF cân tại B (vì BE =BF ) và goc EBF = EBC + CBF = 60+30 = 90o

suy ra goc BEF = \(\frac{180-90}{2}\)=45o

ta có goc AEF = AEB + BEF = 60 + 45 = 105o

ta có tam giac AED cân tại A(vì AD = AE) và goc EAD = 30o nên goc AED = \(\frac{180-30}{2}\)= 75o

Ta có goc AED + goc AEF = 75 + 105 = 180o

suy ra D, E, F thẳng hàng

22 tháng 3 2016

A B C D E F G H

22 tháng 3 2016

Giả sử tứ giác ABCD định hướng âm. Gọi \(f\) là phép quay vec tơ theo góc \(\frac{\pi}{3}\) ta có

\(\overrightarrow{EG}=\overrightarrow{AG}-\overrightarrow{AE}=\overrightarrow{AB}+\overrightarrow{BG}-\overrightarrow{AE}\)

suy ra \(f\left(\overrightarrow{EG}\right)=f\left(\overrightarrow{AB}\right)+f\left(\overrightarrow{BG}\right)-f\left(\overrightarrow{AE}\right)\)

                        \(=\overrightarrow{AE}+\overrightarrow{BC}-\overrightarrow{BE}\)

                        \(=\overrightarrow{AC}\)

Tương tự ta cũng chứng minh được \(f\left(\overrightarrow{HF}\right)=\overrightarrow{AC}\)

Từ đó suy ra \(\overrightarrow{EG}=\overrightarrow{HF}\)

Do đó tứ giác EGFH là hình bình hành

A C B M N 15 o 15 o

Bài làm

Vì tam giác NAB và tam giác đều

=> NA = NB = BA

=> Góc N = góc NBA = góc NAB = 60

Ta có: Góc ABM = NAB + N ( tính chất goác ngoài tam giác )

   hay  Góc ABM = 60o + 60o 

   =>    Góc ABM = 120o 

Lại có: Góc ABC + CBM = ABM 

      hay góc ABC + 15o = 120o 

       => Góc ABC = 120o - 15o 

       => Góc ABC = 105o 

Ta có: Góc NBM = ABN + ABC + CBM 

     hay góc NBM = 60o + 105o + 15o 

      =>  góc NBM = 180o 

Do đó góc NBM là góc bẹt

=> 3 điểm B, M, N thẳng hàng ( đpcm )

# Chúc bạn học tốt #

18 tháng 1 2021

hình như bạn vẽ sai hình thì phải.