giải phương trình vô tỉ sau
1) \(\sqrt{x^2+9x-1}+x\sqrt{11-3x}=2x+3\) (chú ý câu này mình tìm ở trên diễn đàn toán học nhưng mình thấy dài ai có cách ngắn và dễ hiểu thì giúp mình)
2) \(\frac{\sqrt{x+1}}{\sqrt{x+1}-\sqrt{3-x}}=x-\frac{1}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x^2+4x+12}=2x-4+\sqrt{x+1}\) (1)
ĐKXĐ: x >= -1
Đặt x -2 = a; \(\sqrt{x+1}=b\)
Có \(x^2+4x+12=x^2-4x+4+8x+8=\left(x-2\right)^2+8\left(x+1\right)\)
=> \(\sqrt{x^2+4x+12}=\sqrt{\left(x-2\right)^2+8\left(x+1\right)}=\sqrt{a^2+8b^2}\)
(1) => \(\sqrt{a^2+8b^2}=2a+b\)
<=> \(\hept{\begin{cases}2a+b\ge0\\a^2+8b^2=\left(2a+b\right)^2\end{cases}}\)
<=> \(\hept{\begin{cases}2a+b\ge0\\3a^2+4ab-7b^2=0\end{cases}}\)
<=> \(\hept{\begin{cases}2a+b\ge0\\\left(a-b\right)\left(3a+7b\right)=0\end{cases}}\)
TH1: \(\hept{\begin{cases}2a+b\ge0\\a=b\end{cases}}\)
<=> \(\hept{\begin{cases}2a+b\ge0\\\sqrt{x+1}=x-2\end{cases}}\)
<=> \(\hept{\begin{cases}2\left(x-2\right)+\sqrt{x+1}\ge0\\x>2\\x+1=\left(x-2\right)^2\end{cases}}\)<=> \(x=\frac{5+\sqrt{5}}{2}\)
TH2: 3a+7b=0
Trường hợp 2 dài lắm nhưng cuối cùng kết quả vô nghiệm nhé!
P/s: mình không học đội tuyển toán nên mình cũng không biết cách này có được không nữa, mình chỉ làm theo cách cơ bản thôi! Bạn thông cảm nhé!
a)\(\sqrt{2x^2+8x+6}+\sqrt{x^2-1}=2x+2\)
ĐK:tự xác định
\(pt\Leftrightarrow\sqrt{2\left(x+1\right)\left(x+3\right)}+\sqrt{\left(x-1\right)\left(x+1\right)}-2\left(x+1\right)=0\)
\(\Leftrightarrow\sqrt{x+1}\left(\sqrt{2\left(x+3\right)}+\sqrt{x-1}-2\sqrt{x+1}\right)=0\)
Suy ra x=-1 là nghiệm và pt \(\sqrt{2\left(x+3\right)}+\sqrt{x-1}=2\sqrt{x+1}\)
\(\Leftrightarrow2\left(x+3\right)+x-1+2\sqrt{2\left(x+3\right)\left(x-1\right)}=4\left(x+1\right)\)
\(\Leftrightarrow2\sqrt{2\left(x+3\right)\left(x-1\right)}=x-1\)
\(\Leftrightarrow8\left(x+3\right)\left(x-1\right)-\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left(8x+24-x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(7x+25\right)=0\Rightarrow x=1\) (thỏa và 7x+25=0 loại do điều kiện....)
b nghiệm xấu quá để mình xem lại :v
\(\Leftrightarrow\sqrt{2x+6}+\sqrt{x-1}=2\sqrt{x+1}\)
\(\Leftrightarrow\sqrt{2x+6}-2\sqrt{2}+\sqrt{x-1}=2\sqrt{x+1}-2\sqrt{2}\)
\(\Leftrightarrow\frac{2\left(x-1\right)}{\sqrt{2x+6}+2\sqrt{2}}+\sqrt{x-1}=\frac{2\sqrt{x-1}}{\sqrt{x+1}+2\sqrt{2}}\)
\(\Leftrightarrow\frac{2\sqrt{x-1}}{\sqrt{2x+6}+2\sqrt{2}}+1=\frac{2\sqrt{x-1}}{\sqrt{x+1}+1\sqrt{2}}\)
đến đây thì chịu
tìm đc 1 nghiệm là -1;1,nên bình phương lên
Đặt \(t=\sqrt{10-x}+\sqrt{x-7}\) để làm gì vậy bạn? Đặt như vậy thì phương trình sẽ càng khó giải hơn á
Đk: \(-7\le x\le10\)
\(\sqrt{10-x}-\sqrt{x+7}+\sqrt{-x^2+3x+70}=1\)
\(\Leftrightarrow\sqrt{10-x}-\sqrt{x+7}+\sqrt{\left(10-x\right)\left(x+7\right)}=1\)
\(\Leftrightarrow\sqrt{10-x}\left(\sqrt{x+7}+1\right)-\left(\sqrt{x+7} +1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x+7}+1\right)\left(\sqrt{10-x}-1\right)=0\)
Dễ thấy \(\sqrt{x+7}+1>0\). Do đó:
\(\sqrt{10-x}-1=0\Leftrightarrow x=9\left(nhận\right)\)
Thử lại ta có x=9 là nghiệm duy nhất của pt đã cho.
`\sqrt{10-x}-\sqrt{x+7}+\sqrt{-x^2+3x+70}=1` `ĐK: -7 <= x <= 10`
Đặt `\sqrt{10-x}-\sqrt{x+7}=t`
`<=>10-x+x+7-2\sqrt{(x+7)(10-x)}=t^2`
`<=>\sqrt{-x^2+3x+70}=17/2-[t^2]/2`
Khi đó ptr `(1)` có dạng: `t+17/2-[t^2]/2=1`
`<=>2t+17-t^2=2`
`<=>t^2-2t-15=0`
`<=>[(t=5),(t=-3):}`
`@t=5=>\sqrt{-x^2+3x+70}=17/2-5^2/2`
`<=>\sqrt{-x^2+3x+70}=-4` (Vô lí)
`@t=-3=>\sqrt{-x^2+3x+70}=17/2-[(-3)^2]/2`
`<=>-x^2+3x+70=16`
`<=>[(x=9),(x=-6):}` (t/m)
Vậy `S={-6;9}`
ta có pt
<=>\(\sqrt{\left(x+2\right)-4\sqrt{x+2}+4}+\sqrt{x+2-6\sqrt{x+2}+6}=1\)
<=>\(\sqrt{\left(\sqrt{x+2}-2\right)^2}+\sqrt{\left(\sqrt{x+2}-3\right)^2}=1\)
<=>\(\left|\sqrt{x+2}-2\right|+\left|\sqrt{x+2}-3\right|=1\)
<=>\(\left|\sqrt{x+2}-2\right|+\left|3-\sqrt{x+2}\right|=1\)
Mà \(\left|\sqrt{x+2}-2\right|+\left|3-\sqrt{x+2}\right|\ge\left|\sqrt{x+2}-2+3-\sqrt{x+2}\right|=1\)
dâu = xảy ra <=>\(\left(\sqrt{x+2}-2\right)\left(3-\sqrt{x+2}\right)\ge0\)
đến đây thì dex rồi nhé ^_^
Dấu = xảy ra khi 2 dấu căn bằng nhau vì thế x nằm trong khoảng từ 2 đến 7 dù sao bạn CX đã cố gắng mình to cho bạn
\(a,PT\Leftrightarrow x^2-3x+2+x^2-x\sqrt{3x-2}=0\left(x\ge\dfrac{2}{3}\right)\\ \Leftrightarrow\left(x^2-3x+2\right)+\dfrac{x\left(x^2-3x+2\right)}{x+\sqrt{3x-2}}=0\\ \Leftrightarrow\left(x^2-3x+2\right)\left(1+\dfrac{x}{x+\sqrt{3x-2}}\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)\left(1+\dfrac{x}{x+\sqrt{3x-2}}\right)=0\)
Vì \(x\ge\dfrac{2}{3}>0\Leftrightarrow1+\dfrac{x}{x+\sqrt{3x-2}}>0\)
Do đó \(x\in\left\{1;2\right\}\)
\(b,ĐK:0\le x\le4\\ PT\Leftrightarrow x+2\sqrt{x}+1=6\sqrt{x}-3-\sqrt{4-x}\\ \Leftrightarrow x-4\sqrt{x}+4=-\sqrt{4-x}\\ \Leftrightarrow\left(\sqrt{x}-2\right)^2=-\sqrt{4-x}\)
Vì \(VT\ge0\ge VP\Leftrightarrow VT=VP=0\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}-2=0\\\sqrt{4-x}=0\end{matrix}\right.\Leftrightarrow x=4\left(tm\right)\)
Vậy PT có nghiệm \(x=4\)
\(\left(\sqrt{x^2+16}-5\right)\)\(-3\left(x-3\right)-\left(\sqrt{x^2+7}-4\right)=0\)
\(\Leftrightarrow\frac{\left(\sqrt{x^2+16}-5\right)\left(\sqrt{x^2+16}+5\right)}{\sqrt{x^2+16}+5}\)\(-3\left(x-3\right)-\frac{\left(\sqrt{x^2+7}-4\right)\left(\sqrt{x^2+7}+4\right)}{\sqrt{x^2+7}+4}=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{1}{\sqrt{x^2+16}+5}-3-\frac{1}{\sqrt{x^2+7}+4}\right)=0\)
ben trong ngoac bn tu xu li nhe
\(\Rightarrow x=3\)
1) \(\sqrt{x^2+9x-1}+x\sqrt{11-3x}=2x+3\)
\(\Leftrightarrow\sqrt{x^2+9x-1}+x\sqrt{11-3x}=23+x\)
\(\Rightarrow x=5\)
Vì mình giải bằng máy casio nên không thể giải đầy đủ, nhưng kết quả đó đúng đấy
2) \(\frac{\sqrt{x+1}}{\sqrt{x+1}-\sqrt{3-x}}=x-\frac{1}{2}\)
\(\Leftrightarrow\frac{\sqrt{x+1}}{\sqrt{x+1}-\sqrt{3-x}}=1-\frac{1}{2}\Leftrightarrow\frac{\sqrt{x+1}}{\sqrt{x+1}-\sqrt{3-x}}=\frac{1}{2}\)
\(\Rightarrow x=5\)
Phương trình có nghiệm là 5.
Ps: Giải bằng máy casio fx-570VN PLUS , sai thì thôi nhé!