K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2019

Câu hỏi của Nguyễn Phương Chi - Toán lớp 6 - Học toán với OnlineMath

18 tháng 6 2016

Gọi abc là 1 số tự nhiên (có thể ab;abc;abcd;adbc;......)

Ta có

abc-(a+b+c)=100a+10b+c-(a+b+c)=99a+9b+0 chhia hết cho 9

=>đpcm

12 tháng 9 2021

abc-a-b-c=100a+10b+c-a-b-c=99a+9b chia hết 9 (\->)\đpcm

27 tháng 2 2017

Vì n có 5 chữ số nên n có dạng abcdef ( a;b;c;d;e;f là các số có 1 chữ số )

Ta có abcdef - (a + b + c + d + e + f) 

= ( 100000a + 10000b + 1000c + 100a + e + f ) - (a + b + c + d + e + f) 

= ( 100000a - a ) + ( 10000b - b ) + ( 1000c - c ) + ( e - e ) + ( f - f )

= 99999a +9999b + 999c 

= 9( 11111a + 1111b + 111c ) chia hết cho 9

Vậy n chia hết cho 9 ( đpcm )

27 tháng 2 2017

Nhận xét

Một số chia 9 dư bao nhiêu thì tổng các chữ số của nó cũng dư bấy nhiêu.

Giải

Ta có:

n và tổng các chữ số của n có cùng số dư khi chia cho 9

nên hiệu của chúng chia hết cho 9(đpcm)

29 tháng 11 2018

ai cũng có thể giải đươc. Ai nhanh minh k

29 tháng 11 2018

có : \(n^3-7n=n^3-n-6n=n\left(n-1\right)\left(n+1\right)-6n\) mà n,n-1,n+1 là  3 số tự nhiên liên tiếp nên tích của chúng chia hết cho 6 và 6n chia hết cho 6 nên ta có điều phải chứng minh.

11 tháng 9 2019

Câu hỏi của Nguyễn Phương Chi - Toán lớp 6 - Học toán với OnlineMath

10 tháng 4 2022

Xét n+ 1 số sau: a1=5 ;a2 =55;...;an+1 =55 5... ( n+1 chữ số 5).
Theo nguyên lý Dirichlet : với n+1 số trên ắt tồn tại hai số có cùng số dư khi chia cho n. Hiệu
của hai số này là số có dạng: 55…50…0 gồm toàn chữ số 5 và chữ số 0 và chia hết cho n.
Đó là điều phải chứng minh!  Bổ sung thêm công thức nhé: n+1=n.1+1 => tồn tại 1+1=2 số có cùng số dư khi chia cho n.( Vì có n số dư tính từ 0 đến n-1).

10 tháng 4 2022

Xét n+ 1 số sau: a1=5 ;a2 =55;...;an+1 =55 5... ( n+1 chữ số 5).
Theo nguyên lý Dirichlet : với n+1 số trên ắt tồn tại hai số có cùng số dư khi chia cho n. Hiệu
của hai số này là số có dạng: 55…50…0 gồm toàn chữ số 5 và chữ số 0 và chia hết cho n.
Đó là điều phải chứng minh!  Bổ sung thêm công thức nhé: n+1=n.1+1 => tồn tại 1+1=2 số có cùng số dư khi chia cho n.( Vì có n số dư tính từ 0 đến n-1).