K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 7:

a: Khi x=-2 thì \(P\left(-2\right)=2\cdot\left(-2\right)^3+5\cdot\left(-2\right)^2-4\cdot\left(-2\right)+3\)

\(=2\left(-8\right)+5\cdot4+8+3\)

=-16+20+8+3

=4+8+3

=15

b: Khi y=3 thì \(Q\left(3\right)=2\cdot3^3-3^4+5\cdot3^2-3\)

=54-81+45-3

=-30+45

=15

Bài 6:

\(P\left(x\right)=2x+4x^3+7x^2-10x+5x^3-8x^2\)

\(=\left(4x^3+5x^3\right)+\left(7x^2-8x^2\right)+\left(2x-10x\right)\)

\(=9x^3-x^2-8x\)

bậc là 3

Các hệ số là 9;-1;-8

Bài 5:

\(P\left(x\right)=7+10x^2+3x^3-5x+8x^3-3x^2\)

\(=\left(3x^3+8x^3\right)+\left(10x^2-3x^2\right)-5x+7\)

\(=11x^3+7x^2-5x+7\)

HQ
Hà Quang Minh
Giáo viên
20 tháng 9 2023

\(P(x) =7 + 10{x^2} + 3{x^3} - 5x + 8{x^3} - 3{x^2}\\=(3{x^3}+8{x^3})+( 10{x^2} - 3{x^2})-5x + 7\\= 11{x^3} + 7{x^2} - 5x + 7\)

10 tháng 4 2020

dsssws

25 tháng 7 2018

a. Ta có:

f(x) = x3 - 3x2 + 2x - 5 + x2 = x3 -2x2 + 2x- 5

Bậc của đa thức f(x) là 3 (0.5 điểm)

g(x) = -x3 - 5x + 3x2 + 3x + 4 = -x3 + 3x2 - 2x + 4

Bậc của đa thức g(x) là 3 (0.5 điểm)

a: \(P\left(x\right)=2x^3-x^3+x^2+3x-2x+2=x^3+x^2+x+2\)

\(Q\left(x\right)=3x^3-4x^3-4x^2+5x^2+3x-4x+1=-x^3+x^2-x+1\)

b: M(x)=P(x)+Q(x)

\(=x^3+x^2+x+2-x^3+x^2-x+1=2x^2+3\)

N(x)=P(x)-Q(x)

\(=x^3+x^2+x+2+x^3-x^2+x-1=2x^3+2x+1\)

c: Vì \(2x^2+3>0\forall x\)

nên M(x) vô nghiệm

8 tháng 3 2022

a, \(P\left(x\right)=x^3+x^2+x+2\)

\(Q\left(x\right)=-x^3+x^2-x+1\)

b, \(M\left(x\right)=x^3+x^2+x+2-x^3+x^2-x+1=2x^2+3\)

\(N\left(x\right)=x^3+x^2+x+2+x^3-x^2+x-1=2x^3+2x+1\)

c, giả sử \(M\left(x\right)=2x^2+3=0\)( vô lí )

vì 2x^2 >= 0 ; 2x^2 + 3 > 0 

Vậy giả sử là sai hay đa thức M(x) ko có nghiệm 

3 tháng 3 2023

mn giúp mk với ạ!

 

22 tháng 3 2023

`a)`

\(P\left(x\right)=4x+3x^2+x^2+1-5x-2x\\ =\left(3x^2+x^2\right)+\left(4x-5x-2x\right)+1\\ =4x^2-3x+1\\ Q\left(x\right)=3x+x+7-5x^2+5x-11\\ =-5x^2+\left(3x+x+5x\right)+\left(7-11\right)\\ =-5x^2+9x-4\)

`b)`

Đa thức `P(x)` có :

Bậc `2`

Đa thức `Q(x)` có :

Bậc `2`

`c)`

\(P\left(x\right)+Q\left(x\right)=\left(4x^2-3x+1\right)+\left(-5x^2+9x-4\right)\\ =4x^2-3x+1-6x^2+9x-4\\ =\left(4x^2-5x^2\right)-\left(3x-9x\right)+\left(1-4\right)\\ =-x^2+6x-3\)

a: P(x)=4x^2+4x+1-7x=4x^2-3x+1

Q(x)=-5x^2+9x-4

b: P(x) có bậc 2

Q(x) có bậc 2

c: P(x)+Q(x)=4x^2-3x+1-5x^2+9x-4=-x^2+6x-3

a: \(A\left(x\right)=0.5x^5-2x^4+3x^3+2x-3\)

\(B\left(x\right)=-0.5x^5+6x^4+3x^3+3x^2-x-1\)

b: Bậc 5

Hệ số cao nhất 0,5

Hệ số tự do là -3

c: \(A\left(x\right)+B\left(x\right)=4x^4+6x^3+3x^2+x-4\)

\(A\left(x\right)-B\left(x\right)=x^5-8x^4-3x^2+3x-2\)

=>B(x)-A(x)=-x^5+8x^4+3x^2-3x+2

11 tháng 5 2022

\(a,Q_{\left(x\right)}=-4x^3+2x-2+2x-x^2-1\\ Q_{\left(x\right)}=-4x^3-x^2+4x-3\\ P_{\left(x\right)}=4x^3-3x+x^2+7+x\\ P_{\left(x\right)}=4x^3+x^2-2x+7\)

\(b,M_{\left(x\right)}=P_{\left(x\right)}+Q_{\left(x\right)}\\ M_{\left(x\right)}=4x^3+x^2-2x+7-4x^3-x^2+4x-3\\ M_{\left(x\right)}=2x+4\)

\(N_{\left(x\right)}=4x^3+x^2-2x+7+4x^2+x^2-4x+3\\ N_{\left(x\right)}=8x^3+2x^2-6x+10\)

\(c,M_{\left(x\right)}=0\\ \Rightarrow2x+4=0\\ \Rightarrow2x=-4\\ \Rightarrow x=-2\)

a: \(P\left(x\right)=4x^3+x^2-2x+7\)

\(Q\left(x\right)=-4x^3-x^2+4x-3\)

b: \(M\left(x\right)=4x^3+x^2-2x+7-4x^3-x^2+4x-3=2x+4\)

\(N\left(x\right)=8x^3+2x^2-6x+10\)

c: Đặt M(x)=0

=>2x+4=0

hay x=-2

a: P(x)=x^3+x^2+x+2

Q(x)=-x^3+x^2-x+1

b: M(x)=P(x)+Q(x)

=x^3+x^2+x+2-x^3+x^2-x+1

=2x^2+3

N(x)=x^3+x^2+x+2+x^3-x^2+x-1

=2x^3+2x+1

c: M(x)=2x^2+3>=3>0 với mọi x

=>M(x) ko có nghiệm

12 tháng 5 2023

a, P(x)=(2x^3-x^3)+x^2+(3x-2x)+2=x^3+x^2+x+2
Q(x)=(3x^3-4x^3)+(5x^2-4x^2)+(3x-4x)+1=-x^3+x^2-x+1
b, M(x)=P(x)+Q(x)=x^3+x^2+x+2+(-x^3)+x^2-x+1=2x^2+3
N(x)=P(x)-Q(x)=x^3+x^2+x+2-(-x^3+x^2-x+1)=2x^3+2x+1
c, M(x)=2x^2+3
do x^2>=0 với mọi x=2x^2>=0
nên 2x^2+3>=3 với mọi x
để M(x) có nghiệm thì phải tồn tại x để M(x)=0 ( vô lý vì M(x)>=3 với mọi x)
do đó đa thức M(x) không có nghiệm