K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAD và ΔBED có

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔBAD=ΔBED

b: Ta có: ΔBAD=ΔBED

=>DA=DE

Ta có: ΔBAD=ΔBED

=>\(\widehat{BAD}=\widehat{BED}=90^0\)

=>DE\(\perp\)BC tại E

Xét ΔDAK vuông tại A và ΔDEC vuông tại E có

DA=DE

\(\widehat{ADK}=\widehat{EDC}\)(hai góc đối đỉnh)

Do đó; ΔDAK=ΔDEC

=>AK=EC

c: Ta có; ΔDAK=ΔDEC

=>DK=DC 

=>D nằm trên đường trung trực của KC(1)

Ta có: IK=IC

=>I nằm trên đường trung trực của KC(2)

Ta có: BA+AK=BK

BE+EC=BC
mà BA=BE và AK=EC

nên BK=BC

=>B nằm trên đường trung trực của KC(3)

Từ (1),(2),(3) suy ra B,D,I thẳng hàng

13 tháng 4

A) Chứng minh Tam giác BAD = Tam giác BED

Xét hai tam giác BAD và BED, ta có:

BA = BE (theo giả thiết)
∠BAD = ∠BED (do DE là tia phân giác của ∠B)
Do đó, tam giác BAD = tam giác BED (theo trường hợp cạnh - góc - cạnh).

B) Chứng minh AK = EC

Do tam giác BAD = tam giác BED, ta có AD = ED.

Gọi K là giao điểm của BA và DE, ta có:

AK + KD = AD
EK + KD = ED
Do AD = ED, suy ra AK + KD = EK + KD. Do đó, AK = EK.

C) Chứng minh ba điểm B, D, I thẳng hàng

Gọi I là trung điểm của CK. Do AK = EK và AI = IC (do I là trung điểm), ta có tam giác AKE = tam giác ICE (theo trường hợp cạnh - cạnh - cạnh).

Do đó, ∠AKE = ∠ICE. Khi đó, ta có ∠BKI = ∠BID. Do đó, B, D, I thẳng hàng.

12 tháng 12 2016

A B C E F D

a, Số đo góc ABC la : 

goc A+goc B+goc C=180

130+C=180

C=50

=> số đo góc ABD là : goc ABD=1/2gocC=>25

b, Xet 2 tam giac ABD va BDE

Co:AB=BE

goc ABD=goc DBE (250)

BD canh chung =>dpcm

13 tháng 12 2016

mình biết làm mấy câu đầu rồi, mình chỉ bí câu cuối thôi

a: Xét ΔBAD và ΔBED có

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔBAD=ΔBED

=>DA=DE
=>D nằm trên đường trung trực của AE(1)

Ta có: BA=BE

=>B nằm trên đường trung trực của AE(2)

Từ (1) và (2) suy ra BD là đường trung trực của AE

b: Sửa đề: AF=EC

Ta có: ΔBAD=ΔBED

=>\(\widehat{BAD}=\widehat{BED}\)

mà \(\widehat{BAD}=90^0\)

nên \(\widehat{BED}=90^0\)

=>DE\(\perp\)BC

Xét ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE

\(\widehat{ADF}=\widehat{EDC}\)

Do đó;ΔDAF=ΔDEC

=>AF=EC

c: Sửa đề: CM AE//CF

Xét ΔBFC có \(\dfrac{BA}{AF}=\dfrac{BE}{EC}\)

nên AE//CF
d: Sửa đề: I là trung điểm của FC

Ta có: IF=IC

=>I nằm trên đường trung trực của CF(3)

Ta có: DF=DC(ΔDAF=ΔDEC)

=>D nằm trên đường trung trực của CF(4)

ta có: BA+AF=BF

BE+EC=BC

mà BA=BE

và AF=EC

nên BF=BC

=>B nằm trên đường trung trực của CF(5)

Từ (3),(4),(5) suy ra B,D,I thẳng hàng

23 tháng 1

Help me

1. Cho ∆ABC vuông tại A (AB < AC). Vẽ tia BD là phân giác của góc ABC (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BA = BE.a. Chứng minh: ∆BAD = ∆BEDb. Từ A kẻ AH ⊥ BC tại H. Chứng minh: AH // DEc. Trên tia đối của tia ED lấy điểm K sao cho ED = EK. Chứng minh: Góc EKC = góc ABC2.Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Phân giác góc B cắt AC tại D. a. Chứng minh ∆ABD = Đồng ý∆EBD và...
Đọc tiếp

1. Cho ∆ABC vuông tại A (AB < AC). Vẽ tia BD là phân giác của góc ABC (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BA = BE.

a. Chứng minh: ∆BAD = ∆BED

b. Từ A kẻ AH ⊥ BC tại H. Chứng minh: AH // DE

c. Trên tia đối của tia ED lấy điểm K sao cho ED = EK. Chứng minh: Góc EKC = góc ABC

2.

Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Phân giác góc B cắt AC tại D. 

a. Chứng minh ∆ABD = Đồng ý∆EBD và DE ⊥ BC

b. Gọi K là giao điểm của tia ED và tia BA. Chứng minh AK = EC.

c. Gọi M là trung điểm của KC. Chứng minh ba điểm B, D, M thẳng hàng.

3.

Cho tam giác ABC vuông tại A (AB < AC). Trên cạnh BC lấy điểm M sao cho BA = BM. Gọi E là trung điểm AM.

a.Chứng minh: ∆ABE = ∆MBE.

b. Gọi K là giao điểm BE và AC. Chứng minh: KM ⊥ BC,

c. Qua M vẽ đường thẳng song song với AC cắt BK tại F. Trên đoạn thẳng KC lấy điểm Q sao cho KQ = MF. Chứng minh: góc ABK = QMC

4

 

Cho tam giác ABC có AB = AC, lấy M là trung điểm của BC.

a) Chứng minh ∆ABM = ∆ACM

b) Kẻ ME ⊥ AB tại Em kẻ MF ⊥ AC tại F. Chứng minh AE = AF.

c) Gọi K là trung điểm của EF. Chứng minh ba điểm A, K, M thẳng hàng

d) Từ C kẻ đương thẳng song song với AM cắt tia BA tại D. Chứng minh A là trung điểm của BD.

2

4:

a: Xet ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC
=>ΔAMB=ΔAMC

b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF
c: AE=AF
ME=MF

=>AM là trung trực của EF

mà K nằm trên trung trực của EF

nên A,M,K thẳng hàng

28 tháng 4 2023

4:

a: Xet ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC
=>ΔAMB=ΔAMC

b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF
c: AE=AF
ME=MF

=>AM là trung trực của EF

mà K nằm trên trung trực của EF

nên A,M,K thẳng hàng

29 tháng 1 2022

4) a.Ta có: 

\(BA=BE\)

\(ABD=DBE\rightarrow\Delta ABD=\Delta EBDchungBD\)

b) Từ câu a \(\rightarrow BED=BAD=90^o\)

\(\rightarrow DE\text{⊥}BC\)

c) Ta có :

\(BKD=ADK=ACB+DEC=90^o\)

\(BKD=ACB\)

\(\text{Δ B D K = Δ B D C ( g . c . g )}\)

\(BK=BC\)

 

undefined

5)

Ta có:

\(2^{300}=\left(2^3\right)^{100}=8^{100}\)

\(3^{200}=\left(3^2\right)^{100}=9^{100}\)

Mà \(8< 9\Rightarrow2^{300}< 3^{200}\)

29 tháng 1 2022

Bài 5:

\(2^{300}=\left(2^3\right)^{100}=8^{100}\\ 3^{200}=\left(3^2\right)^{100}=9^{100}\\ Vì:8< 9\Rightarrow8^{100}< 9^{100}\\ \Rightarrow2^{300}< 3^{200}\)

a: Xét ΔBAD và ΔBED có

BA=BE

góc ABD=góc EBD

BD chung

=>ΔBAD=ΔBED

b: ΔBAD=ΔBED

=>góc BED=90 độ

c: Xet ΔDAI vuông tại A và ΔDEC vuông tại E co

DA=DE
góc ADI=góc EDC

=>ΔDAI=ΔDEC

=>DI=DC và AI=EC

=>BI=BC

=>BD là trung trực của IC

=>BD vuông góc IC

16 tháng 4 2023

Bạn vẽ hình giúp mik nữa nhé