Cho x=1+2+2^2+...+2^200
y=2^201
Chứng tỏ x và y la 2 số tự nhiên liên tiếp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x = 1 + 2 + 2 ^ 2 + 2 ^ 3 + ... + 2 ^ 2015 + 2 ^ 2016
x . 2 = ( 1 + 2 + 2 ^ 2 + 2 ^ 3 + ... + 2 ^ 2015 + 2 ^ 2016 ) x 2
x . 2 = 2 + 2 ^ 2 + 2 ^ 3 + 2 ^ 4 + ... + 2 ^ 2016 + 2 ^ 2017
x . 2 = ( 1+ 2 + 2 ^ 2 + 2 ^ 3 + 2 ^ 4 + ... + 2 ^ 2015 + 2 ^ 2016 ) + 2 ^ 2017 - 1
x . 2 = x + 2 ^ 2017 - 1
x = 2 ^ 2017 - 1 ( cùng chia cả 2 vế đi x )
Mã y = 2 ^ 2017 lá số hơn 2 ^ 2017 - 1 một đơn vị
=> x và y là 2 số tự nhiên liên tiếp
x = 1 + 2 + 22 + 23 + ... + 22015 + 22016
2 . x = ( 1 + 2 + 22 + 23 + 24 + ... + 22015 + 22016 ) . 2
2 . x = 2 + 22 + 23 + 24 + 25 + ... + 22016 + 22017
x = 2 . x - x = ( 2 + 22 + 23 + 24 + ... + 22015 + 22016 ) - ( 1 + 2 + 22 + 23 + 24 + ... + 22015 + 22016 )
x = 22017 - 1
Do x = 22017 - 1
y = 22017
nên x và y là hai số tự nhiên liên tiếp
Suy ra ( đpcm )
x = 1+2+22+23+.....+22015
2x = 2+22+23+24+....+22016
2x- x = 22016 - 1
=> x = 22016 - 1
Có y - x = 22016 - (22016 - 1) = 1
=> x và y là 2 số tự nhiên liên tiếp (Đpcm)
Ta có: \(\dfrac{25}{2}=12,5\)
Mà: \(12< 12,5< 14\)
\(\Rightarrow x=12,y=14\)
x, y là 2 STN liên tiếp \(\Rightarrow y=x+1\)
\(\Rightarrow\left(x+1\right)^2-x^2>20\Rightarrow2x>19\Rightarrow x>\dfrac{19}{2}\)
\(\Rightarrow x_{min}=10\Rightarrow y_{min}=11\)
\(\Rightarrow\) GTNN của \(x^2+y^2\) là \(10^2+11^2=221\)
\(x=1+2+2^2+...+2^{200}\)
\(\Rightarrow2x=2.\left(1+2+2^2+...+2^{200}\right)\)
\(\Rightarrow2x=2+2^2+2^3+...+2^{201}\)
\(\Rightarrow2x-x=2+2^2+...+2^{201}-\left(1+2+2^2+...+2^{200}\right)\)
\(\Rightarrow x=2+2^2+...+2^{201}-1-2-2^2-...-2^{200}\)
\(\Rightarrow x=2^{201}-1\)
Vì \(x=2^{201}-1\)và \(y=2^{201}\)=> x và y là 2 số tụ nhiên liên tiếp.