a 2m^2 64dm^2= m^2
b 7m^2 7dm^2= m^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT=\left(m-a\right)^2+\left(2m-b\right)^2+\left(3m-c\right)^2\)
\(=m^2-2am+a^2+4m^2-4bm+9m^2-6mc+c^2\)
\(=14m^2-2m\left(a+2b+3c\right)+a^2+b^2+c^2\)
\(=14m^2-14m^2+a^2+b^2+c^2\) ( do \(a+2b+3c=7m\) )
\(=a^2+b^2+c^2=VP\)
\(\Rightarrowđpcm\)
Ta có: \(VT=\left(m-a\right)^2+\left(2m-b\right)^2+\left(3m-c\right)^2\)
\(=m^2-2ma+a^2+4m^2-4mb+b^2+9m^2-6mc+c^2\)
\(=m^2-2ma+4m^2-4mb+9m^2-6mc+a^2+b^2+c^2\)
\(=m\left(14m-2a-4b-6c\right)+a^2+b^2+c^2\)
\(=-2m\left(-7m+a+2b+6c\right)+a^2+b^2+c^2\)
\(=-2m\left(-7m+7m\right)+a^2+b^2+c^2\)
\(=a^2+b^2+c^2=VP\)
Vậy (m - a)2 + (2m - b)2 + (3m - c)2 = a2 + b2 + c2.
\(S=\dfrac{2m^2+7m+23}{m^2+2m+10}\Rightarrow Sm^2+2Sm+10S=2m^2+7m+23\)
\(\Leftrightarrow\left(S-2\right)m^2+\left(2S-7\right)m+10S-23=0\)
\(\Delta=\left(2S-7\right)^2-4\left(S-2\right)\left(10S-23\right)\ge0\)
\(\Leftrightarrow4S^2-16S+15\le0\)
\(\Rightarrow\dfrac{3}{2}\le S\le\dfrac{5}{2}\)
\(S_{min}=\dfrac{3}{2}\) khi \(m=-4\)
\(S_{max}=\dfrac{5}{2}\) khi \(m=2\)
Nguyễn Việt Lâm Giáo viên, thầy cho em hỏi tên phương pháp làm của thầy được không ạ??
b, pt \(\Leftrightarrow\)mx - 2=0
Nếu m=0 pt\(\Leftrightarrow\) -2=0 (vô lí)\(\Rightarrow\)m=2(loại)
Nếu m\(\ne\)0 pt có nghiệm x=\(\dfrac{2}{m}\)
5m 7dm = 5m + \(\frac{7}{10}\)m = \(5\frac{7}{10}\)m
7m 6dm = 7m + \(\frac{6}{10}\)m = \(7\frac{6}{10}\)m
24m 7dm = 24m + \(\frac{7}{10}\)m = \(24\frac{7}{10}\)m
40m 4dm = 40m + \(\frac{4}{10}\)m = \(40\frac{4}{10}\)m
Ủng hộ nha
\(\Delta'=\left(m+1\right)^2-\left(m^2-2m+5\right)=4\left(m-1\right)\)
Pt có 2 nghiệm pb khi \(m-1>0\Rightarrow m>1\)
Khi đó ta có: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)>0\\x_1x_2=m^2-2m+5=\left(m-1\right)^2+4>0\end{matrix}\right.\)
\(\Rightarrow\) Cả 2 nghiệm của pt đều dương \(\Rightarrow\left\{{}\begin{matrix}2x_1+m>0\\x_2+2m>0\end{matrix}\right.\) (1)
Do đó:
\(\sqrt{4x_1^2+4mx_1+m^2}+\sqrt{x^2_2+4mx_2+4m^2}=7m+2\)
\(\Leftrightarrow\sqrt{\left(2x_1+m\right)^2}+\sqrt{\left(x_2+2m\right)^2}=7m+2\)
\(\Leftrightarrow\left|2x_1+m\right|+\left|x_2+2m\right|=7m+2\)
\(\Leftrightarrow2x_1+m+x_2+2m=7m+2\) (theo (1))
\(\Leftrightarrow2x_1+x_2=4m+2\)
Kết hợp với hệ thức Viet ta được:
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\2x_1+x_2=4m+2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=2m\\x_2=2\end{matrix}\right.\)
Thế vào \(x_1x_2=m^2-2m+5\)
\(\Rightarrow4m=m^2-2m+5\)
\(\Leftrightarrow m^2-6m+5=0\Rightarrow\left[{}\begin{matrix}m=1\left(loại\right)\\m=5\end{matrix}\right.\)
1/ \(\Delta'=\left(m+1\right)^2-2m^2-m-3=m^2+2m+1-2m^2-m-3\)
\(=-m^2+m-2=-\left(m^2-m+\frac{1}{2}\right)-\frac{3}{2}\le-\frac{3}{2}\)
=> pt vô nghiệm với mọi m
2/ Vì \(m^2+1\ge1\forall m\)
\(\Rightarrow\Delta'=\left(m+2\right)^2-6\left(m^2+1\right)\)
\(=m^2+4m+4-6m^2-6=-5m^2+4m-2\)
\(=-5\left(m^2+\frac{4}{5}m+\frac{4}{25}\right)-\frac{6}{5}\le-\frac{6}{5}\)
=> pt vô nghiệm với mọi m
3/\(\Delta'=\left(m-3\right)^2-2m^2+7m-10\)
\(=m^2-6m+9-2m^2+7m-10=-m^2+m-1\)
\(=-\left(m^2-m+\frac{1}{4}\right)-\frac{3}{4}\le-\frac{3}{4}\)
=> pt vô nghiệm với mọi m
1:
a: TH1: x<-3
=>-x-3+10-2x=12
=>-3x+7=12
=>-3x=5
=>x=-5/3(loại)
TH2: -3<=x<5
=>x+3+10-2x=12
=>13-x=12
=>x=1(nhận)
Th3: x>=5
=>x+3+2x-10=12
=>3x=19
=>x=19/3(nhận)
b: =>|2x|+|2x-4|=x+1
TH1: x<0
=>-2x+4-2x=x+1
=>-4x+4-x-1=0
=>-5x=-3
=>x=3/5(loại)
TH2: 0<=x<2
=>2x+4-2x=x+1
=>x=3(loại)
TH3: x>=2
=>2x+2x-4=x+1
=>3x=5
=>x=5/3(loại)
a = 2,64 m2
b = 7,07 m2
2m2 64dm2 = 2,64m2
7m2 7dm2 = 7,07 m2