K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2017

Với mọi \(a,b,c\in R\)thì ta có:

\(a^2+b^2+c^2\ge2bc+2ca-2ab\)*

Ta cần chứng minh * là BĐT đúng

Từ * \(\Leftrightarrow a^2+b^2+c^2+2ab-2bc-2ca\ge0\)

        \(\Leftrightarrow"a+b-c"^2\ge0\)**

BĐT ** hiển nhiên đúng với mọi a,b,c, mà các phép biến đỗi trên tương tự:

Do đó, BĐT * được chứng minh

Xảy ra đẳng thức trên khi và chỉ khi \(a+b=c\)

Mặt khác

\(a^2+b^2+c^2=\frac{5}{3}\)theo giả thiết

Mà: \(\frac{5}{3}=1\frac{2}{3}< 2\)

\(\Rightarrow a^2+b^2+c^2< 2\)***

Từ * và *** kết hợp lại ta có thể viết " kép " lại được: \(2bc+2ca-2ab\le a^2+b^2+c^2< 2\)

Suy ra: \(2bc+2ca-2ab< 2\)

Khi đó, vì abc > 0 do a,b,c ko âm nên chia cả hai vế cho bất đằng trên cho 2abc, ta được:

\(\frac{2bc+2ca-2ab}{2abc}>\frac{2}{2abc}\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< \frac{1}{abc}\)

Vậy: với a,b,c là các số thực dương thỏa mãn điểu kiện \(a^2+b^2+c^2=\frac{5}{3}\)thì ta chứng minh được: \(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< \frac{1}{abc}\)

P/s:....

8 tháng 8 2017

\(\frac{a^5-a^2}{a^5+b^2+c^2}+\frac{b^5-b^2}{b^5+c^2+a^2}+\frac{c^5-c^2}{c^5+a^2+b^2}\ge0\)

\(\Leftrightarrow1-\frac{a^2+b^2+c^2}{a^5+b^2+c^2}+1-\frac{a^2+b^2+c^2}{b^5+c^2+a^2}+1-\frac{a^2+b^2+c^2}{c^5+a^2+b^2}\ge0\)

\(\Leftrightarrow\frac{1}{a^5+b^2+c^2}+\frac{1}{b^5+c^2+a^2}+\frac{1}{c^5+a^2+b^2}\le\frac{3}{a^2+b^2+c^2}\)

Áp dụng BĐT Cauchy-Schwarz ( chính là BĐT BCS) ta có:

\(\left(a^5+b^2+c^2\right)\left(\frac{1}{a}+b^2+c^2\right)\ge\left(a^2+b^2+c^2\right)^2\)

\(\Rightarrow\frac{1}{a^5+b^2+c^2}\le\frac{\frac{1}{a}+b^2+c^2}{\left(a^2+b^2+c^2\right)^2}\).Tương tự:

\(\frac{1}{b^5+a^2+c^2}\le\frac{\frac{1}{b}+a^2+c^2}{\left(a^2+b^2+c^2\right)^2};\frac{1}{c^5+a^2+b^2}\le\frac{\frac{1}{c}+a^2+b^2}{\left(a^2+b^2+c^2\right)^2}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT=Σ\frac{1}{a^5+b^2+c^2}\le\frac{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+2\left(a^2+b^2+c^2\right)}{\left(a^2+b^2+c^2\right)^2}\)

Cần chứng minh \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+2\left(a^2+b^2+c^2\right)\le3\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\) (Đúng)

Xảy ra khi \(a=b=c=1\)

-Lời giải được nhai lại từ Câu hỏi của LIVERPOOL - Toán lớp 9 - Học toán với OnlineMath

4 tháng 7 2017

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\dfrac{a}{\sqrt{a^2+1}}=\dfrac{a}{\sqrt{a^2+ab+bc+ca}}=\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)

\(\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)\). Thiếp lập 2 BĐT còn lại:

\(\dfrac{b}{\sqrt{b^2+1}}\le\dfrac{1}{2}\left(\dfrac{b}{b+c}+\dfrac{b}{a+b}\right);\dfrac{c}{\sqrt{c^2+1}}\le\dfrac{1}{2}\left(\dfrac{c}{c+a}+\dfrac{c}{b+c}\right)\)

Cộng theo vế 3 BĐT trên ta có:

\(A\le\dfrac{1}{2}\left(\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{c+a}{c+a}\right)=\dfrac{1}{2}\cdot3=\dfrac{3}{2}\)

Xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)

22 tháng 11 2019

Buffalo way! 

\(\Leftrightarrow\frac{7}{5}\left(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}\right)\le\frac{a^2+b^2+c^2}{abc}\) (đồng bậc 2 vế)

\(\Leftrightarrow7\left(bc+a\left(c-b\right)\right)\le5\left(a^2+b^2+c^2\right)\)

Ta có:\(VP-VT=5a^2+\left(b-c\right)a+5b^2+5c^2-7bc\)

\(=\frac{\left(10a+b-c\right)^2+99\left(b-\frac{69c}{99}\right)^2+\frac{560}{11}c^2}{20}\ge0\)

qed./.

25 tháng 3 2017

Ta có:

\(\left(a+b-c\right)^2\ge0\)

\(\Leftrightarrow a^2+b^2+c^2\ge2ac+2bc-2ab\)

Mà \(a^2+b^2+c^2=\frac{5}{3}< 2\)

\(\Rightarrow2ac+2bc-2ab< 2\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< \frac{1}{abc}\)

31 tháng 8 2019

\(sigma\frac{a}{1+b-a}=sigma\frac{a^2}{a+ab-a^2}\ge\frac{\left(a+b+c\right)^2}{a+b+c+\frac{\left(a+b+c\right)^2}{3}-\frac{\left(a+b+c\right)^2}{3}}=1\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)

\(\frac{1}{b^2+c^2}=\frac{1}{1-a^2}=1+\frac{a^2}{b^2+c^2}\le1+\frac{a^2}{2bc}\)

Tương tự cộng lại quy đồng ta có đpcm 

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

NV
30 tháng 12 2020

1. Đề thiếu

2. BĐT cần chứng minh tương đương:

\(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)

Ta có:

\(a^4+b^4+c^4\ge\dfrac{1}{3}\left(a^2+b^2+c^2\right)^2\ge\dfrac{1}{3}\left(ab+bc+ca\right)^2\ge\dfrac{1}{3}.3abc\left(a+b+c\right)\) (đpcm)

3.

Ta có:

\(\left(a^6+b^6+1\right)\left(1+1+1\right)\ge\left(a^3+b^3+1\right)^2\)

\(\Rightarrow VT\ge\dfrac{1}{\sqrt{3}}\left(a^3+b^3+1+b^3+c^3+1+c^3+a^3+1\right)\)

\(VT\ge\sqrt{3}+\dfrac{2}{\sqrt{3}}\left(a^3+b^3+c^3\right)\)

Lại có:

\(a^3+b^3+1\ge3ab\) ; \(b^3+c^3+1\ge3bc\) ; \(c^3+a^3+1\ge3ca\)

\(\Rightarrow2\left(a^3+b^3+c^3\right)+3\ge3\left(ab+bc+ca\right)=9\)

\(\Rightarrow a^3+b^3+c^3\ge3\)

\(\Rightarrow VT\ge\sqrt{3}+\dfrac{6}{\sqrt{3}}=3\sqrt{3}\)

NV
30 tháng 12 2020

4.

Ta có:

\(a^3+1+1\ge3a\) ; \(b^3+1+1\ge3b\) ; \(c^3+1+1\ge3c\)

\(\Rightarrow a^3+b^3+c^3+6\ge3\left(a+b+c\right)=9\)

\(\Rightarrow a^3+b^3+c^3\ge3\)

5.

Ta có:

\(\dfrac{a}{b}+\dfrac{b}{c}\ge2\sqrt{\dfrac{a}{c}}\) ; \(\dfrac{a}{b}+\dfrac{c}{a}\ge2\sqrt{\dfrac{c}{b}}\) ; \(\dfrac{b}{c}+\dfrac{c}{a}\ge2\sqrt{\dfrac{b}{a}}\)

\(\Rightarrow\sqrt{\dfrac{b}{a}}+\sqrt{\dfrac{c}{b}}+\sqrt{\dfrac{a}{c}}\le\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}=1\)