Tìm x thuộc N : 4n + 2 + 4n+3 + 4n + 4 + 4n + 5 = 85.( 22016 : 22012 )
giúp mk nhé chỉ trong ngày hôm nay thôi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Gợi ý cho bạn nhé :
+) Nếu ( 24n + 7 ) : 5 => 24n + 7 = Không có tận cùng là 0 hoặc 5 . ý là có tận cùng phải khác 0 hay 5 . Số dư bạn tự tìm nha.
+) Nếu ( 42n + 1 + 3 ) :5 => 42n + 1 + 3 = Không có tận cùng là 0 hoặc 5 . ý là có tận cùng phải khác 0 hay 5 . Số dư bạn tự tìm nha.
+) ( 74n + 2 + 6 ) :10 => 74n + 2 + 6 = Tận cùng khác 0
+) ( 34n + 3 + 24n + 2 + 2016 ) :10 => 34n + 3 + 24n + 2 + 2016 = Tận cùng khác 0
Tự luận đi nhé , bài này cũng không khó đâu
a) Vì 4n-5 chia hết cho n-3 nên 4n - 12 + 7 chia hết cho n-3
Vì 4n - 12 = 4.(n-3) chia hết cho n-3,4n-12+7 chia hết cho n-3
Suy ra 7 chia hết cho n-3
Suy ra n-3 thuộc ước của 7
Suy ra n-3 thuộc {1;-1;7;-7}
Suy ra n thuộc{4;2;10;-4}
Vậy _______________________
b)Vì n^2 + 4n + 11 chia hết cho n+4 nên n(n+4) + 11 chia hết cho n+4
Mà n(n+4) chia hết cho n+4 nên 11 chia hết cho n+4
Suy ra n+4 thuộc ước của 11
Suy ra n+4 thuộc {1;-1;11;-11}
Suy ra n thuộc {-3;-5;7;-15}
Vậy ________________
\(3^{8n+2}+2^{12n+3}\)
\(=24^n\cdot9+24^n\cdot8\)
\(=24^n\cdot17⋮17\)
\(n^2+4n+5⋮n+4\)
\(\Leftrightarrow n\left(n+4\right)+5⋮n+4\)
mà \(n\left(n+4\right)⋮\left(n+4\right)\Rightarrow5⋮n+4\)
hay \(n+4\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
n + 4 | 1 | -1 | 5 | -5 |
n | -3 | -5 | 1 | -9 |
`a in ZZ`
`=>6n-4 vdots 2n+1`
`=>3(2n+1)-7 vdots 2n+1`
`=>7 vdots 2n+1`
`=>2n+1 in Ư(7)={+-1,+-7}`
`=>2n in {0,-2,6,-8}`
`=>n in {0,-1,3,-4}`
`b in ZZ`
`=>3n+2 vdots 4n-4`
`=>12n+8 vdots 4n-4`
`=>3(4n-4)+20 vdots 4n-4`
`=>20 vdots 4n-4`
`=>4n-4 in Ư(20)={+-1,+-2,+-4,+-5,+-10,+-20}`
`=>4n-4 in {+-4,+-20}`
`=>n-1 in {+-1,+-5}`
`=>n in {0,2,6,-4}`
`c in ZZ`
`=>4n-1 vdots 3-2n`
`=>2(3-2n)-7 vdots 3-2n`
`=>7 vdots 3-2n`
`=>3-2n in Ư(7)={+-1,+-7}`
`=>2n in {4,0,-4,10}`
`=>n in {2,0,-2,5}`
a) đk: \(n\ne\dfrac{-1}{2}\)
Để \(\dfrac{6n-4}{2n+1}\) nguyên
<=> \(\dfrac{3\left(2n+1\right)-7}{2n+1}\) nguyên
<=> \(3-\dfrac{7}{2n+1}\) nguyên
<=> \(7⋮2n+1\)
Ta có bảng
2n+1 | 1 | -1 | 7 | -7 |
n | 0 | -1 | 3 | -4 |
tm | tm | tm | tm |
b)đk: \(n\ne1\)
Để \(\dfrac{3n+2}{4n-4}\) nguyên
=> \(\dfrac{3n+2}{n-1}\) nguyên
<=> \(\dfrac{3\left(n-1\right)+5}{n-1}\) nguyên
<=> \(3+\dfrac{5}{n-1}\) nguyên
<=> \(5⋮n-1\)
Ta có bảng:
n-1 | 1 | -1 | 5 | -5 |
n | 2 | 0 | 6 | -4 |
Thử lại | tm | loại | tm | loại |
c) đk: \(n\ne\dfrac{3}{2}\)
Để \(\dfrac{4n-1}{3-2n}\) nguyên
<=> \(\dfrac{4n-1}{2n-3}\) nguyên
<=> \(\dfrac{2\left(2n-3\right)+5}{2n-3}\) nguyên
<=> \(2+\dfrac{5}{2n-3}\) nguyên
<=> \(5⋮2n-3\)
Ta có bảng:
2n-3 | 1 | -1 | 5 | -5 |
n | 2 | 1 | 4 | -1 |
tm | tm | tm | tm |
Gọi \(d=ƯCLN\left(3n-2;4n-3\right)\) \(\left(d\in N\right)\)
Khi đó \(3n-2⋮d\Rightarrow4.\left(3n-2\right)⋮d\)( vì 3n-2 chia hết cho d nên 4.(3n-2) cũng luôn chia hết cho d )
\(4n-3⋮d\Rightarrow3.\left(4n-3\right)⋮d\)( tương tự trên )
Do đó \(3.\left(4n-3\right)-4.\left(3n-2\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
Do đó \(ƯCLN\left(3n-2;4n-3\right)=1\)
Khi đó phân số \(\frac{3n-2}{4n-3}\)tối giản
2,
(x+1)x+3=(x+1)x+7
=>(x+1)x.(x+1)3=(x+1)x.(x+1)7
=> (x+1)3=(x+1)3+4
=> (x+1)3=(x+1)3.(x+1)4
=> 1=(x+1)3
=> x+1=1
=> x=0
Vậy x=0
Bạn cứ xem đi, để mình đăng lên dần.