tính gọn:
A=2+2^2+2^3+2^4+.....+2^200
B=1+3+3^2+3^2+.....+2007
C=4+4^2+4^3+4^4+...+4^100
D=5+5^2+5^3+....+5^150
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\Rightarrow5\left(x-10\right)=10\)
\(\Rightarrow x-10=2\Rightarrow x=12\)
b) \(\Rightarrow3\left(70-x\right)+5=92\)
\(\Rightarrow3\left(70-x\right)=87\)
\(\Rightarrow70-x=29\Rightarrow x=41\)
c) \(\Rightarrow230+\left[16+\left(x-5\right)\right]=315\)
\(\Rightarrow11+x=85\Rightarrow x=74\)
d) \(\Rightarrow707:\left(2^x-5+74\right)=7\)
\(\Rightarrow2^x-5+74=101\Rightarrow2^x-5=27\)
\(\Rightarrow2^x=32\Rightarrow x=5\)
Lời giải chi tiết:
5 – 1 = 4 | 4 – 1 = 3 | 3 – 1 = 2 | 2 + 3 = 5 |
5 – 2 = 3 | 4 – 2 = 2 | 3 – 2 = 1 | 3 + 2 = 5 |
5 – 3 = 2 | 4 – 3 = 1 | 2 – 1 = 1 | 5 – 2 = 3 |
5 – 4 = 1 | 5 – 3 = 2 |
5-1=4 4-1=3 3-1=2 2+3=5
5-2=3 4-2=2 3-2=1 3+2=5
5-3=2 4-3=1 2-1=1 5-2=3
5-4=1 5-3=2
a) A = 2 + 2² + 2³ + ... + 2¹⁰⁰
⇒ 2A = 2² + 2³ + 2⁴ + ... + 2¹⁰¹
⇒ A = 2A - A
= (2² + 2³ + 2⁴ + ... + 2¹⁰¹) - (2 + 2² + 2³ + ... + 2¹⁰⁰)
= 2¹⁰¹ - 2
b) B = 1 + 5 + 5² + ... + 5¹⁵⁰
⇒ 5B = 5 + 5² + 5³ + ... + 5¹⁵¹
⇒ 4B = 5B - B
= (5 + 5² + 5³ + ... + 5¹⁵¹) - (1 + 5 + 5² + ... + 5¹⁵⁰)
= 5¹⁵¹ - 1
⇒ B = (5¹⁵¹ - 1) : 4
a) `(2x+5)^3-(2x-5)^3-(120x^2+49)`
`=(2x+5-2x+5)[(2x+5)^2+(2x+5)(2x-5)+(2x-5)^2]-(120x^2+49)`
`=10(12x^2+25)-(120x^2+49)`
`=120x^2+250-120x^2-49`
`=201`
b) `(4-5x)^2-(3+5x)^2=(4-5x+3+5x)(4-5x-3-5x)=7.(-10x+1)=-70x+7`
Lời giải:
a.
$(2x+5)^3-(2x-5)^3-(120x^2+49)$
$=[(2x+5)-(2x-5)][(2x+5)^2+(2x+5)(2x-5)+(2x-5)^2]-(120x^2+49)$
$=10(4x^2+20x+25+4x^2-25+4x^2-20x+25)-(120x^2+49)$
$=10(12x^2+25)-(120x^2+49)=250-49=201$
b.
$(4-5x)^2-(3+5x)^2=[(4-5x)+(3+5x)][(4-5x)-(3+5x)]$
$=7(1-10x)$
2) -3(4 - 7) + 5(-3 + 2)
= -3.4 + 3.7 - 5.3 + 5.2
= -12 + 21 -15 + 10
= 31 - 27
= 4
4) -5(2 - 7) + 4(2 - 5)
= -5.2 + 5.7 + 4.2 - 4.5
= -10 + 35 + 8 - 20
= 38 - 30
= 8
5:
a: \(3^{2n}=\left(3^2\right)^n=9^n\)
\(\left(2^{3n}\right)=\left(2^3\right)^n=8^n\)
=>\(3^{2n}>2^{3n}\)
b: \(199^{20}=\left(199^4\right)^5=1568239201^5\)
\(2003^{15}=\left(2003^3\right)^5=8036054027^5\)
mà \(1568239201< 8036054027\)
nên \(199^{20}< 2003^{15}\)
4: \(100< 5^{2x-1}< 5^6\)
mà \(25< 100< 125\)
nên \(125< 5^{2x-1}< 5^6\)
=>3<2x-1<6
=>4<2x<7
=>2<x<7/2
mà x nguyên
nên x=3
a: Ta có: \(x^2-4-\left(x+2\right)^2\)
\(=x^2-4-x^2-4x-4\)
=-4x-8
b: Ta có: \(\left(x+2\right)\left(x-2\right)-\left(x-3\right)\left(x+1\right)\)
\(=x^2-4-x^2+2x+3\)
=2x-1
c: ta có: \(\left(x-2\right)\left(x+2\right)-\left(x-2\right)\left(x+5\right)\)
\(=\left(x-2\right)\left(x+2-x-5\right)\)
\(=-3x+6\)
d: Ta có: \(\left(6x+1\right)^2-2\left(6x+1\right)\left(6x-1\right)+\left(6x-1\right)^2\)
\(=\left(6x+1-6x+1\right)^2\)
=4
e: ta có: \(7a\left(3a-5\right)+\left(2a-3\right)\left(4a+1\right)-\left(6a-2\right)^2\)
\(=21a^2-35a+8a^2+2a-12a-3-\left(36a^2-24a+4\right)\)
\(=29a^2-45a-3-36a^2+24a-4\)
\(=-7a^2-21a-7\)
g: ta có: \(\left(5y-3\right)\left(5y+3\right)-\left(5y-4\right)^2\)
\(=25y^2-9-25y^2+40y-16\)
=40y-25
h: Ta có: \(\left(3x+1\right)^3-\left(1-2x\right)^3\)
\(=27x^3+27x^2+9x+1-1+6x-12x^2+8x^3\)
\(=35x^3+15x^2+15x\)
i: Ta có: \(\left(2x+1\right)^2+2\left(4x^2-1\right)+\left(2x-1\right)^2\)
\(=\left(2x+1+2x-1\right)^2\)
\(=16x^2\)
Bài 1:
a, 3\(\dfrac{2}{5}\) - \(\dfrac{1}{2}\)
= \(\dfrac{17}{5}\) - \(\dfrac{1}{2}\)
= \(\dfrac{34}{10}\) - \(\dfrac{5}{10}\)
= \(\dfrac{29}{10}\)
b, \(\dfrac{4}{5}\) + \(\dfrac{1}{5}\) x \(\dfrac{3}{4}\)
= \(\dfrac{4\times4}{5\times4}\) + \(\dfrac{1\times3}{5\times4}\)
= \(\dfrac{16}{20}\) + \(\dfrac{3}{20}\)
= \(\dfrac{19}{20}\)
c, 4\(\dfrac{4}{9}\) : 2\(\dfrac{2}{3}\) + 3\(\dfrac{1}{6}\)
= \(\dfrac{40}{9}\) : \(\dfrac{8}{3}\) + \(\dfrac{19}{6}\)
= \(\dfrac{5}{3}\) + \(\dfrac{19}{6}\)
= \(\dfrac{10}{6}\) + \(\dfrac{19}{6}\)
= \(\dfrac{29}{6}\)
Bài 2:
3\(\dfrac{2}{5}\) + 2\(\dfrac{1}{5}\)
= \(\dfrac{17}{5}\) + \(\dfrac{11}{5}\)
= \(\dfrac{28}{5}\)
b, 7\(\dfrac{1}{6}\) : 5\(\dfrac{2}{3}\)
= \(\dfrac{43}{6}\) : \(\dfrac{17}{3}\)
= \(\dfrac{43}{34}\)
a)
A = 2 + 22 + 23 + 24 + ... + 2200
2A = 22 + 23 + 24 + 25 + ... + 2200
2A - A = A = 2200 - 2
b) chịu
c)
C = 4 + 42 + 43 + 44 +... + 4100
4C = 42 + 43 + 44 + 45 + ... + 4101
4C - C = 3C = 4101 - 4
\(\Rightarrow\) C = \(\frac{4^{101}-4}{3}\)
d)
D = 5 + 52 + 53 + ... + 5100
5D = 52 + 53 + 54 + ... + 5101
5D - D = 4D = 5101 - 5
\(\Rightarrow\)D = \(\frac{5^{101}-5}{4}\)