K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

easy

\(VT\ge\frac{8}{\left(a+b\right)^2+\left(a+b\right)^2c}+\frac{8}{\left(b+c\right)^2+\left(b+c\right)^2c}+\frac{8}{\left(c+a\right)^2+\left(c+a\right)^2b}+\frac{\left(a+b\right)^2}{4}+\frac{\left(b+c\right)^2}{4}+\frac{\left(c+a\right)^2}{4}\)

\(=\frac{8}{\left(a+b\right)^2\left(c+1\right)}+\frac{8}{\left(b+c\right)^2\left(a+1\right)}+\frac{8}{\left(c+a\right)^2\left(b+1\right)}+\frac{\left(a+b\right)^2}{4}+\frac{\left(b+c\right)^2}{4}+\frac{\left(c+a\right)^2}{4}\)

đến đây ghép rồi dùng cô si

bài này trong đề thi của tỉnh nào đó ở nước nào đó ở hành tinh nào đó năm 2016-2017

13 tháng 4 2019

bạn làm luôn khúc sau dùm mik nhé, mik ko hiểu

7 tháng 5 2017

Theo hệ quả của bất đẳng thức Cauchy

\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow\dfrac{a^2}{2}+\dfrac{b^2}{c}+\dfrac{c^2}{c}\ge\dfrac{ab}{2}+\dfrac{bc}{2}+\dfrac{ca}{2}\)

\(\Leftrightarrow a^2-\dfrac{a^2}{2}+b^2-\dfrac{b^2}{2}+c^2-\dfrac{c^2}{2}\ge\dfrac{ab}{2}+\dfrac{bc}{2}+\dfrac{ca}{2}\)

\(\Leftrightarrow a^2+b^2+c^2\ge\dfrac{a^2+b^2+c^2+ab+bc+ca}{2}\)

\(\Leftrightarrow a^2+b^2+c^2\ge\dfrac{2\left(a^2+b^2+c^2+ab+bc+ca\right)}{4}\)

\(\Leftrightarrow a^2+b^2+c^2\ge\dfrac{\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2}{4}\) (1)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow a^2+b^2\ge2\sqrt{a^2b^2}=2ab\)

\(\Rightarrow\left(a+b\right)^2\ge4ab\)

Tương tự ta có \(\left\{{}\begin{matrix}\left(b+c\right)^2\ge4bc\\\left(c+a\right)^2\ge4ca\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left(a+b\right)^2c+\left(a+b\right)^2\ge4abc+\left(a+b\right)^2\\\left(b+c\right)^2a+\left(b+c\right)^2\ge4abc+\left(b+c\right)^2\\\left(c+a\right)^2b+\left(c+a\right)^2\ge4abc+\left(c+a\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(a+b\right)^2\left(c+1\right)\ge4abc+\left(a+b\right)^2\\\left(b+c\right)^2\left(a+1\right)\ge4abc+\left(b+c\right)^2\\\left(c+a\right)^2\left(b+1\right)\ge4abc+\left(c+a\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{8}{\left(a+b\right)^2\left(c+1\right)}\le\dfrac{8}{4abc+\left(a+b\right)^2}\\\dfrac{8}{\left(b+c\right)^2\left(a+1\right)}\le\dfrac{8}{4abc+\left(b+c\right)^2}\\\dfrac{8}{\left(c+a\right)^2\left(b+1\right)}\le\dfrac{8}{4abc+\left(c+a\right)^2}\end{matrix}\right.\) (2)

Từ (1) và (2)

\(\Rightarrow VT\ge\dfrac{8}{\left(a+b\right)^2\left(c+1\right)}+\dfrac{8}{\left(b+c\right)^2\left(a+1\right)}+\dfrac{8}{\left(c+a\right)^2\left(b+1\right)}+\dfrac{\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a^2\right)}{4}\) (3)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\dfrac{8}{\left(a+b\right)^2\left(c+1\right)}+\dfrac{\left(a+b\right)^2}{4}\ge2\sqrt{\dfrac{2}{c+1}}=\dfrac{4}{\sqrt{2\left(c+1\right)}}\)

Tương tự ta có \(\left\{{}\begin{matrix}\dfrac{8}{\left(b+c\right)^2\left(a+1\right)}+\dfrac{\left(b+c\right)^2}{4}\ge\dfrac{4}{\sqrt{2\left(a+1\right)}}\\\dfrac{8}{\left(c+a\right)^2\left(b+1\right)}+\dfrac{\left(c+a\right)^2}{4}\ge\dfrac{4}{\sqrt{2\left(b+1\right)}}\end{matrix}\right.\)

\(\Rightarrow\dfrac{8}{\left(a+b\right)^2\left(c+1\right)}+\dfrac{8}{\left(b+c\right)^2\left(a+1\right)}+\dfrac{8}{\left(c+a\right)^2\left(b+1\right)}+\dfrac{\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a^2\right)}{4}\ge\dfrac{4}{\sqrt{2\left(c+1\right)}}+\dfrac{4}{\sqrt{2\left(a+1\right)}}+\dfrac{4}{\sqrt{2\left(b+1\right)}}\)(4)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\sqrt{2\left(c+1\right)}\le\dfrac{c+3}{2}\)

\(\Rightarrow\dfrac{4}{\sqrt{2\left(c+1\right)}}\ge\dfrac{8}{c+3}\)

Tượng tự ta có \(\left\{{}\begin{matrix}\dfrac{4}{\sqrt{2\left(a+1\right)}}\ge\dfrac{8}{a+3}\\\dfrac{4}{\sqrt{2\left(b+1\right)}}\ge\dfrac{8}{b+3}\end{matrix}\right.\)

\(\Rightarrow\dfrac{4}{\sqrt{2\left(c+1\right)}}+\dfrac{4}{\sqrt{2\left(a+1\right)}}+\dfrac{4}{\sqrt{2\left(b+1\right)}}\ge\dfrac{8}{a+3}+\dfrac{8}{b+3}+\dfrac{8}{c+3}\) (5)

Từ điều (3) , (4) , (5)

\(\Rightarrow\dfrac{8}{\left(a+b\right)^2+4abc}+\dfrac{8}{\left(b+c\right)^2+4abc}+\dfrac{8}{\left(c+a\right)^2+4abc}+a^2+b^2+c^2\ge\dfrac{8}{a+3}+\dfrac{8}{b+3}+\dfrac{8}{c+3}\) ( đpcm )

1 tháng 1 2020

<3 

Cần CM: \(\frac{a}{\left(1-a\right)^3}\ge\frac{135}{16}a-\frac{27}{16}\)\(\left(0< a< 1\right)\)

thaajt vậy, bđt \(\Leftrightarrow\)\(\left(a-\frac{1}{3}\right)^2\left(15a^2-38a+27\right)\ge0\) đúng 

\(\Sigma\frac{a}{\left(b+c\right)^3}=\Sigma\frac{a}{\left(1-a\right)^3}\ge\frac{135}{16}\left(a+b+c\right)-\frac{81}{16}=\frac{27}{8}\)

dấu "=" xảy ra khi a=b=c=1 

1 tháng 1 2020

à nhầm, \(a=b=c=\frac{1}{3}\)

8 tháng 1 2020

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc\)

\(=abc+a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+abc+abc\)

\(=\left(a+b+c\right)\left(ab+bc+ca\right)\)( phân tích nhân tử các kiểu )

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\left(a+b+c\right)\left(ab+bc+ca\right)-abc\left(1\right)\)

\(a+b+c\ge3\sqrt[3]{abc};ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\Rightarrow\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc\)

\(\Rightarrow-abc\ge\frac{-\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)

Khi đó:\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

\(\ge\left(a+b+c\right)\left(ab+bc+ca\right)-\frac{\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)

\(=\frac{8\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\left(2\right)\)

Từ ( 1 ) và ( 2 ) có đpcm

9 tháng 8 2017

Ta có: \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)

\(\Rightarrow\frac{a^3+b^3+c^3}{4abc}=\frac{3}{4}+\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)}{4abc}\)

\(=\frac{3}{4}+\frac{1}{4}\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

\(\ge\frac{9\left(a^2+b^2+c^2\right)}{4\left(ab+bc+ca\right)}-\frac{3}{2}\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\ge\frac{9}{ab+ac+bc}\right)\)

\(\Rightarrow\frac{a^3+b^3+c^3}{4abc}\ge\frac{9}{4}\left(\frac{a^2+b^2+c^2}{ab+bc+ac}\right)-\frac{3}{2}\left(1\right)\)

Lại có:\(\frac{\left(a+b+c\right)^2}{30\left(a^2+b^2+c^2\right)}=\frac{a^2+b^2+c^2+2\left(ab+bc+ac\right)}{30\left(a^2+b^2+c^2\right)}\)

\(=\frac{1}{30}+\frac{1}{15}\left(\frac{ab+bc+ca}{a^2+b^2+c^2}\right)\left(2\right)\).Từ (1);(2) có:

\(P=\frac{1}{30}-\frac{3}{2}+\frac{1}{5}\left(\frac{ab+bc+ca}{a^2+b^2+c^2}\right)+\frac{9}{4}\left(\frac{a^2+b^2+c^2}{ab+bc+ca}\right)-\frac{131\left(a^2+b^2+c^2\right)}{60\left(ab+bc+ca\right)}\)

\(=\frac{1}{15}\left(\frac{a^2+b^2+c^2}{ab+bc+ac}+\frac{ab+bc+ca}{a^2+b^2+c^2}-22\right)\ge-\frac{4}{3}\)

đề thi hsg toán lớp 9 tỉnh thanh hóa năm 2016-2017 mà

22 tháng 2 2018

đây là toán đâu phải văn. bạn bị say rượu à