Tìm x:
a) 3x - 2/3 = 19/12
b) x-2\(\dfrac{2}{3}\)x = -3\(\dfrac{1}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(y'=12x+\dfrac{4}{x^2}\)
2.
\(y'=\dfrac{3}{\left(-x+1\right)^2}\)
3.
\(y'=\dfrac{2x-3}{2\sqrt{x^2-3x+4}}\)
4.
\(y=\dfrac{x^3+3x^2-x-3}{x-4}\)
\(y'=\dfrac{\left(3x^2+6x-1\right)\left(x-4\right)-\left(x^3+3x^2-x-3\right)}{\left(x-4\right)^2}=\dfrac{2x^3-9x^2-24x+7}{\left(x-4\right)^2}\)
5.
\(y'=-\dfrac{4x-3}{\left(2x^2-3x+5\right)^2}\)
6.
\(y'=\sqrt{x^2-1}+\dfrac{x\left(x+1\right)}{\sqrt{x^2-1}}\)
\(a,A=\dfrac{\left(3x+6\right)\left(x-2\right)}{x^2-4}\left(x\ne\pm2\right)\\ A=\dfrac{3\left(x+2\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=3\\ b,A=\dfrac{x-3}{x\left(3-x\right)}\left(x\ne0;x\ne3\right)\\ A=\dfrac{-\left(3-x\right)}{x\left(3-x\right)}=\dfrac{-1}{x}\)
a) ĐKXĐ: \(x\ne3\)
Ta có: \(\dfrac{x^2-x-6}{x-3}=0\)
\(\Leftrightarrow\dfrac{\left(x+2\right)\left(x-3\right)}{x-3}=0\)
Suy ra: x+2=0
hay x=-2(thỏa ĐK)
Vậy: S={-2}
d)
ĐKXĐ: \(x\notin\left\{1;3\right\}\)
Ta có: \(\dfrac{x+5}{x-1}=\dfrac{x+1}{x-3}-\dfrac{8}{x^2-4x+3}\)
\(\Leftrightarrow\dfrac{\left(x+5\right)\left(x-3\right)}{\left(x-1\right)\left(x-3\right)}=\dfrac{\left(x+1\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}-\dfrac{8}{\left(x-1\right)\left(x-3\right)}\)
Suy ra: \(x^2-3x+5x-15=x^2-1-8\)
\(\Leftrightarrow2x-15+9=0\)
\(\Leftrightarrow2x-6=0\)
hay x=3(loại)
Vậy: \(S=\varnothing\)
a: =>2(2x-3)-9=5-3x-2
=>4x-6-9=-3x+3
=>4x-15=-3x+3
=>7x=18
=>x=18/7
b: =>\(\dfrac{2}{3x}-\dfrac{3}{12}=\dfrac{4}{5}-\dfrac{21}{3x}+2\)
=>\(\dfrac{23}{3x}=\dfrac{4}{5}+2+\dfrac{1}{4}=\dfrac{61}{20}\)
=>3x=460/61
=>x=460/183
1: Ta có: \(\dfrac{x+4}{4}+\dfrac{3x-7}{5}=\dfrac{7x+2}{20}\)
\(\Leftrightarrow5x+20+12x-28=7x+2\)
\(\Leftrightarrow17x-7x=2+8=10\)
hay x=1
2: Ta có: \(\dfrac{x}{6}+\dfrac{1-3x}{9}=\dfrac{-x+1}{12}\)
\(\Leftrightarrow\dfrac{6x}{36}+\dfrac{4\left(1-3x\right)}{36}=\dfrac{3\left(-x+1\right)}{36}\)
\(\Leftrightarrow6x+4-12x=-3x+3\)
\(\Leftrightarrow-6x+3x=3-4\)
hay \(x=\dfrac{1}{3}\)
3: Ta có: \(\dfrac{x-3}{3}-\dfrac{x+2}{12}=\dfrac{2x-1}{4}\)
\(\Leftrightarrow4x-12-x-2=6x-3\)
\(\Leftrightarrow3x-14-6x+3=0\)
\(\Leftrightarrow-3x=11\)
hay \(x=-\dfrac{11}{3}\)
4: Ta có: \(\dfrac{x-2}{4}-\dfrac{2x+3}{3}=\dfrac{x+6}{12}\)
\(\Leftrightarrow3x-6-8x-12=x+6\)
\(\Leftrightarrow-5x-x=6+18\)
hay x=-4
5: Ta có: \(\dfrac{2x-1}{12}-\dfrac{3-x}{18}=\dfrac{-1}{36}\)
\(\Leftrightarrow6x-3+2x-6=-1\)
\(\Leftrightarrow8x=8\)
hay x=1
a. 3x2 - 2x - 1 = 0
<=> 3x2 - 3x + x - 1 = 0
<=> 3x(x - 1) + (x - 1) = 0
<=> (3x + 1)(x - 1) = 0
<=> \(\left[{}\begin{matrix}3x+1=0\\x-1=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=1\end{matrix}\right.\)
b. \(\dfrac{x+1}{3}+\dfrac{2x+3}{5}=\dfrac{3}{4}\)
<=> \(\dfrac{20\left(x+1\right)}{60}+\dfrac{12\left(2x+3\right)}{60}=\dfrac{45}{60}\)
<=> 20x + 20 + 24x + 36 = 45
<=> 44x = -11
<=> x = \(-\dfrac{1}{4}\)
a) \(3x^2-2x-1=0\) \(\Leftrightarrow\left(x-1\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)
b) Pt\(\Rightarrow\)\(5\cdot4\left(x+1\right)+3\cdot4\cdot\left(2x+3\right)=3\cdot3\cdot5\)
\(\Leftrightarrow44x=-11\Rightarrow x=-\dfrac{1}{4}\)
a) ĐKXĐ: \(x\notin\left\{-1;-2;2\right\}\)
Ta có: \(\dfrac{1}{x^2+3x+2}-\dfrac{3}{x^2-x-2}=\dfrac{-1}{x^2-4}\)
\(\Leftrightarrow\dfrac{1}{\left(x+1\right)\left(x+2\right)}-\dfrac{3}{\left(x-2\right)\left(x+1\right)}=\dfrac{-1}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow\dfrac{x-2}{\left(x+1\right)\left(x+2\right)\left(x-2\right)}-\dfrac{3\left(x+2\right)}{\left(x+2\right)\left(x+1\right)\left(x-2\right)}=\dfrac{-1\left(x+1\right)}{\left(x+1\right)\left(x-2\right)\left(x+2\right)}\)
Suy ra: \(x-2-3x-6=-x-1\)
\(\Leftrightarrow-2x-8+x+1=0\)
\(\Leftrightarrow-x-7=0\)
\(\Leftrightarrow-x=7\)
hay x=-7(thỏa ĐK)
Vậy: S={-7}
a) ĐKXĐ: x∉{−1;−2;2}x∉{−1;−2;2}
Ta có: 1x2+3x+2−3x2−x−2=−1x2−41x2+3x+2−3x2−x−2=−1x2−4
⇔1(x+1)(x+2)−3(x−2)(x+1)=−1(x−2)(x+2)⇔1(x+1)(x+2)−3(x−2)(x+1)=−1(x−2)(x+2)
⇔x−2(x+1)(x+2)(x−2)−3(x+2)(x+2)(x+1)(x−2)=−1(x+1)(x+1)(x−2)(x+2)⇔x−2(x+1)(x+2)(x−2)−3(x+2)(x+2)(x+1)(x−2)=−1(x+1)(x+1)(x−2)(x+2)
Suy ra: x−2−3x−6=−x−1x−2−3x−6=−x−1
⇔−2x−8+x+1=0⇔−2x−8+x+1=0
⇔−x−7=0⇔−x−7=0
⇔−x=7⇔−x=7
hay x=-7(thỏa ĐK)
Vậy: S={-7}
Đọc tiếp
a) ĐKXĐ: x∉{−1;−2;2}x∉{−1;−2;2}
Ta có: 1x2+3x+2−3x2−x−2=−1x2−41x2+3x+2−3x2−x−2=−1x2−4
⇔1(x+1)(x+2)−3(x−2)(x+1)=−1(x−2)(x+2)⇔1(x+1)(x+2)−3(x−2)(x+1)=−1(x−2)(x+2)
⇔x−2(x+1)(x+2)(x−2)−3(x+2)(x+2)(x+1)(x−2)=−1(x+1)(x+1)(x−2)(x+2)⇔x−2(x+1)(x+2)(x−2)−3(x+2)(x+2)(x+1)(x−2)=−1(x+1)(x+1)(x−2)(x+2)
Suy ra: x−2−3x−6=−x−1x−2−3x−6=−x−1
⇔−2x−8+x+1=0⇔−2x−8+x+1=0
⇔−x−7=0⇔−x−7=0
⇔−x=7⇔−x=7
hay x=-7(thỏa ĐK)
Vậy: S={-7}
Đọc tiếp
a: \(=\dfrac{x^3-x^2+x-1}{\left(x-2\right)\left(x+2\right)}-\dfrac{x-2}{\left(x+2\right)\left(x+1\right)}-\dfrac{3x}{\left(x-2\right)\left(x+1\right)}+\dfrac{2x+5}{\left(x+1\right)\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{\left(x-1\right)\left(x^2+1\right)\left(x+1\right)-x^2+4x-4-3x^2-6x+2x+5}{\left(x+2\right)\left(x+1\right)\left(x-2\right)}\)
\(=\dfrac{x^4-1-4x^2+1}{\left(x+2\right)\left(x-2\right)\left(x+1\right)}=\dfrac{x^2\left(x-2\right)\left(x+2\right)}{\left(x+2\right)\left(x-2\right)\left(x+1\right)}\)
=x^2/x+1
b: Sửa đề: \(\dfrac{19x^2-30x+9}{2x^3+54}-\dfrac{x-3}{2x^2+6x}-\dfrac{3x^2}{2x^2-6x+18}\) \(=\dfrac{19x^2-30x+9}{2\left(x+3\right)\left(x^2-3x+9\right)}-\dfrac{x-3}{2x\left(x+3\right)}-\dfrac{3x^2}{2\left(x^2-3x+9\right)}\)
\(=\dfrac{19x^3-30x^2+9x-\left(x-3\right)\left(x^2-3x+9\right)-3x^3\left(x+3\right)}{2x\left(x+3\right)\left(x^2-3x+9\right)}\)
\(=\dfrac{19x^3-30x^2+9x-3x^4-9x^3-\left(x^3-3x^2+9x-3x^2+9x-27\right)}{2x\left(x+3\right)\left(x^2-3x+9\right)}\)
\(=\dfrac{-3x^4+10x^3-30x^2+9x-x^3+6x^2-18x+27}{2x\left(x+3\right)\left(x^2-3x+9\right)}\)
\(=\dfrac{-3x^4+10x^3-24x^2-9x+27}{2x\left(x+3\right)\left(x^2-3x+9\right)}\)
a. \(A=\left(\dfrac{2-3x}{x^2+2x-3}-\dfrac{x+3}{1-x}-\dfrac{x+1}{x+3}\right):\dfrac{3x+12}{x^3-1}\left(ĐKXĐ:x\ne1;x\ne-3\right)\)
\(=\left(\dfrac{2-3x}{\left(x-1\right)\left(x+3\right)}+\dfrac{x+3}{x-1}-\dfrac{x+1}{x+3}\right):\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\left(\dfrac{2-3x}{\left(x-1\right)\left(x+3\right)}+\dfrac{\left(x+3\right)^2}{\left(x-1\right)\left(x+3\right)}-\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+3\right)}\right):\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{2-3x+x^2+6x+9-x^2+1}{\left(x-1\right)\left(x+3\right)}:\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{3x+12}{\left(x-1\right)\left(x+3\right)}:\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{3x+12}{\left(x-1\right)\left(x+3\right)}.\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{3x+12}=\dfrac{x^2+x+1}{x+3}\)
\(M=A.B=\dfrac{x^2+x+1}{x+3}.\dfrac{x^2+x-2}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x^2+x-2}{x+3}\)
b. -Để M thuộc Z thì:
\(\left(x^2+x-2\right)⋮\left(x+3\right)\)
\(\Rightarrow\left(x^2+3x-2x-6+4\right)⋮\left(x+3\right)\)
\(\Rightarrow\left[x\left(x+3\right)-2\left(x+3\right)+4\right]⋮\left(x+3\right)\)
\(\Rightarrow4⋮\left(x+3\right)\)
\(\Rightarrow x+3\in\left\{1;2;4;-1;-2;-4\right\}\)
\(\Rightarrow x\in\left\{-2;-1;1;-4;-5;-7\right\}\)
c. \(A^{-1}-B=\dfrac{x+3}{x^2+x+1}-\dfrac{x^2+x-2}{x^3-1}\)
\(=\dfrac{x+3}{x^2+x+1}-\dfrac{x^2+x-2}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{\left(x+3\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{x^2+x-2}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x^2-x+3x-3-x^2-x+2}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1}{x^2+x+1}\)
\(=\dfrac{1}{x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}}=\dfrac{1}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le\dfrac{1}{\dfrac{3}{4}}=\dfrac{4}{3}\)
\(Max=\dfrac{4}{3}\Leftrightarrow x=\dfrac{-1}{2}\)
\(a,\Rightarrow\left(x-\dfrac{1}{2}\right)^3=\dfrac{1}{27}=\left(\dfrac{1}{3}\right)^3\\ \Rightarrow x-\dfrac{1}{2}=\dfrac{1}{3}\Rightarrow x=\dfrac{5}{6}\\ b,\Rightarrow\left(\dfrac{3}{2}\right)^{2x-1}:\left(\dfrac{3}{2}\right)^9=\left(\dfrac{3}{2}\right)^4\\ \Rightarrow2x-1-9=4\\ \Rightarrow2x=14\Rightarrow x=7\\ c,\Rightarrow2^{x-1}+2^{x+2}=9\cdot2^5\\ \Rightarrow2^{x-1}\left(1+2^3\right)=9\cdot2^5\\ \Rightarrow2^{x-1}\cdot9=9\cdot2^5\\ \Rightarrow2^{x-1}=2^5\Rightarrow x-1=5\Rightarrow x=6\\ d,\Rightarrow\left(2x+1\right)^2=12+69=81\\ \Rightarrow\left[{}\begin{matrix}2x+1=9\\2x+1=-9\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-5\end{matrix}\right.\)
a; 3\(x\) - \(\dfrac{2}{3}\) = \(\dfrac{19}{12}\)
3\(x\) = \(\dfrac{19}{12}\) + \(\dfrac{2}{3}\)
3\(x\) = \(\dfrac{9}{4}\)
\(x\) = \(\dfrac{9}{4}\) : 3
\(x\) = \(\dfrac{3}{4}\)
Vậy \(x\) \(\in\) { \(\dfrac{3}{4}\)}
b; \(x\) - 2\(\dfrac{2}{3}\)\(x\) = -3\(\dfrac{1}{2}\)
\(x\).(1 - 2\(\dfrac{2}{3}\)) = - \(\dfrac{7}{2}\)
\(x\).(-\(\dfrac{5}{3}\)) = - \(\dfrac{7}{2}\)
\(x\) = (- \(\dfrac{7}{2}\)) : (- \(\dfrac{5}{3}\))
\(x\) = \(\dfrac{21}{10}\)
Vậy \(x\) = \(\dfrac{21}{10}\)