Chứng tỏ rằng a+b+c+d chia hết cho 9 thì số abcd chia hết cho 4
Chứng tỏ rằng abc chia hết cho 25 khi và chỉ khi bc chia hết cho 25
Chứng tỏ rằng abcd chia hết cho 8 khi và chỉ khi bcd chia hết cho 8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2x+3y\right)⋮17\Leftrightarrow13\left(2x+3y\right)⋮17\Leftrightarrow\left(26x+39y\right)⋮17\)
\(\Leftrightarrow\left(26x-17x+39y-34y\right)⋮17\Leftrightarrow\left(9x+5y\right)⋮17\)
Lời giải:
Nếu $2x+3y\vdots 17$
$\Rightarrow 9(2x+3y)\vdots 17$
$\Rightarrow 18x+27y\vdots 17$
$\Rightarrow 18x+27y-17y\vdots 17$
$\Rightarrow 18x+10y\vdots 17$
$\Rightarrow 2(9x+5y)\vdots 17$
$\Rightarrow 9x+5y\vdots 17(1)$
-----------------------
Nếu $9x+5y\vdots 17$
$\Rightarrow 2(9x+5y)\vdots 17$
$\Rightarrow 18x+10y\vdots 17$
$\Rightarrow 18x+10y+17y\vdots 17$
$\Rightarrow 18x+27y\vdots 17$
$\Rightarrow 9(2x+3y)\vdots 17$
$\Rightarrow 2x+3y\vdots 17(2)$
Từ $(1); (2)$ ta có đpcm.
Ta có 17x+17y chia hết cho 17
9x+5y chia hết cho 17
=> 17x+17y-9x-5y=8x+12y=4(2x+3y) chia hết cho 17 => 2x+3y chia hết cho 17
Giả sử: \(9x+5y⋮17\)
\(\Rightarrow3\left(9x+5y\right)⋮17\)
\(\Rightarrow27x+15y⋮17\)
\(\Rightarrow\left(17x+10x+15y\right)⋮17\)
\(Vì\) \(17x⋮17\) nên \(\left(10x+15y\right)⋮17\)
\(\Rightarrow2x+3y⋮17\) \(chỉ\)\(khi\) \(\left(9x+5y\right)⋮17\left(dieu1\right)\)
Giả sử: \(2x+3y⋮17\)
\(\Rightarrow5\left(2x+3y\right)⋮17\)
\(\Rightarrow\left(10x+15y\right)⋮17\)
\(\Rightarrow\left(17x+10x+15y\right)⋮17\)
\(\Rightarrow\left(27x+15y\right)⋮17\)
\(\Rightarrow3\left(9x+5y\right)⋮17\)
\(Mà\) \(3\) không chia hết cho 17 \(\Rightarrow9x+5y⋮17\) (điều 2)
Từ điều 1 và điều 2 \(\Rightarrow2x+3y⋮17\Leftrightarrow9x+5y⋮17\)
Vậy \(2x+3y⋮17\Leftrightarrow9x+5y⋮17\)
ta có: 2x+3y chia hết cho 17
suy ra 2x+3y+34x+17y chia hết cho 17
36x+20y chia hết cho 17
4.(9x+5y) chia hết cho 17
mà (17,4)=1
9x+5y chia hết cho 17
sau đó bạn làm ngược lại là được
9x+5y chia hết cho 17 mà (4,17)=1 nên 4(9x+5y) chia hết cho 17 hay 36x+20y chia hết cho 17.
mà 34x chia hết cho 17, 17y chia hết cho 17 nên 36x+20y-34x-17y=2x+3y chia hết cho 17
Ta phải chứng minh , 2. x + 3 . y chia hết cho 17, thì 9 . x + 5 . y chia hết cho 17
Ta có 4 ﴾2x + 3y ﴿ + ﴾ 9x + 5y ﴿ = 17x + 17y chia hết cho 17
Do vậy ; 2x + 3y chia hết cho 17 4 ﴾ 2x +3y ﴿ chia hết cho 17 9x + 5y chia hết cho 17
Ngược lại ; Ta có 4 ﴾ 2x + 3y ﴿ chia hết cho 17 mà ﴾ 4 ; 17 ﴿ = 1
2x + 3y chia hết cho 17
Vậy ...
Câu 2 :
Ta có: abc = a00 + bc = a x 100 + bc
Vì a x 100 chia hết cho 25 (trong tích có 100 chia hết cho 25)
=> bc cũng phải chia hết cho 25 (Để abc chia hết cho 25)
Diễn đạt hơi lủng củng để dễ hiểu mong bạn thông cảm