S = \(\dfrac{5^2}{1.6}\) + \(\dfrac{5^2}{6.11^{ }}\) + \(\dfrac{5^2}{11.16^{ }}\) + ... + \(\dfrac{5^2}{96.101}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\dfrac{5^2}{1.6}+\dfrac{5^2}{6.11}+\dfrac{5^2}{11.16}+...+\dfrac{5^2}{96.101}\\ S=\dfrac{25}{1.6}+\dfrac{25}{6.11}+\dfrac{25}{11.16}+...+\dfrac{25}{96.101}\\ S=5.\left(\dfrac{5}{1.6}+\dfrac{5}{6.11}+\dfrac{5}{11.16}+...+\dfrac{5}{96.101}\right)\\ S=5.\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+...+\dfrac{1}{96}-\dfrac{1}{101}\right)\\ S=5.\left(1-\dfrac{1}{101}\right)\\ S=5.\dfrac{100}{101}\\ S=\dfrac{500}{101}\)
Ta có: \(\dfrac{5}{1.6}+\dfrac{5}{6.11}+\dfrac{5}{11.16}+...+\dfrac{5}{96.101}\) \(=1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+...+\dfrac{1}{96}-\dfrac{1}{101}\) \(=1-\dfrac{1}{101}\) \(\dfrac{100}{101}\)
\(\dfrac{5}{1.6}+\dfrac{5}{6.11}+\dfrac{5}{11.16}+.....+\dfrac{5}{96.101}\)
\(=1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+......+\dfrac{1}{96}-\dfrac{1}{101}\)
\(=1-\dfrac{1}{101}\)
\(=\dfrac{101}{101}-\dfrac{1}{101}\)
\(=\dfrac{101-1}{101}\)
\(=\dfrac{100}{101}\)
Giải:
a) S=52/1.6+52/6.11+52/11.16+52/16.21+52/21.26
S=5.(5.1/6+5/6.11+5/11.16+5/16.21+5/21.26)
S=5.(1/1-1/6+1/6-1/11+1/11-1/16+1/16-1/21+1/21-1/26)
S=5.(1/1-1/26)
S=5.25/26
S=125/26
b) (1-1/2).(1-1/3).(1-1/4).(1-1/5).....(1-1/19).(1-1/20)
=1/2.2/3.3/4.4/5.....18/19.19/20
=1.2.3.4.....18.19/2.3.4.5.....19.20
=1/20
Chúc bạn học tốt!
a, bạn tự làm
b, \(B=\dfrac{5^2}{5}\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+...+\dfrac{1}{101}-\dfrac{1}{106}\right)\)
\(=5\left(1-\dfrac{1}{106}\right)=\dfrac{5.105}{106}=\dfrac{525}{106}\)
c, đk : \(x\ne\dfrac{2}{3}\)
Ta có : \(\left|x-1\right|=2\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)(tm)
Với x = 3 suy ra \(C=\dfrac{2.9+9-1}{3.3-2}=\dfrac{26}{7}\)
Với x = -1 suy ra \(C=\dfrac{2-3-1}{-3-2}=\dfrac{-2}{-5}=\dfrac{2}{5}\)
`#lv`
`A=(-1)+(-5)+(-9)+...+(-101)`
`=-(1+5+9+...+101)`
Số số hạng là :
`[101-(-1)]:4+1=26(` số hạng `)`
Tổng là :
`[(-101)+(-1)]xx26:2=-1326`
Vậy `A=-1326`
__
`B=-5/17 . 8/19 + (-12)/17 . 8/19 - 11/19`
`=((-5)/17+(-12)/17).8/19-11/19`
`=-1.8/19-11/19`
`=-8/19-11/19`
`=-8/19+(-11)/19`
`=-19/19`
`=-1`
__
`C=10/1.6 + 10/6.11 + 10/11.16 + ... + 10/2016.2021`
`=2.(1-1/6+1/6-1/11+...+1/2016-1/2021)`
`=2(1-1/2021)`
`=2. (2021/2021-1/2021)`
`=2. 2020/2021`
`=4040/2021`
`A = ( 5^2 )/( 1*6)+(5^2)/(6*11)+.....+(5^2)/(26*31)`
`= 5*( 5/( 1*6)+ 5/(6*11)+.....+5/(26*31))`
`= 5*( 1 - 1/6 + 1/6 - 1/11 +....+1/26 - 1/31 )`
`= 5*( 1 - 1/31 )`
`= 5 * 30/31 = 150/31`
\(A=\dfrac{5^2}{1.6}+\dfrac{5^2}{6.11}+...+\dfrac{5^2}{26.31}\)
\(=5.\left(\dfrac{5}{1.6}+\dfrac{5}{6.11}+...+\dfrac{5}{26.31}\right)\)
\(=5.\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+...+\dfrac{1}{26}-\dfrac{1}{31}\right)\)
\(=5.\left(1-\dfrac{1}{31}\right)=5.\dfrac{30}{31}=\dfrac{150}{31}\)
\(A=\dfrac{5^2}{1.6}+\dfrac{5^2}{6.11}+...+\dfrac{5^2}{26.31}\)
\(A=5\left(\dfrac{5}{1.6}+\dfrac{5}{6.11}+..+\dfrac{5}{26.31}\right)\)
\(A=5\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+...+\dfrac{1}{26}-\dfrac{1}{31}\right)\)
\(A=5\left(1-\dfrac{1}{31}\right)\)
\(A=5-\dfrac{1}{155}\)
\(A< 5\rightarrowđpcm\)
\(A=\dfrac{5^2}{1.6}+\dfrac{5^2}{6.11}+.......\dfrac{5^2}{26.31}\)
\(\Leftrightarrow A=5\left(\dfrac{5}{1.6}+\dfrac{5}{6.11}+.........+\dfrac{5}{26.31}\right)\)
\(\Leftrightarrow A=5\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+..........+\dfrac{1}{26}-\dfrac{1}{31}\right)\)
\(\Leftrightarrow A=5\left(1-\dfrac{1}{31}\right)\)
\(\Leftrightarrow A=5.\dfrac{30}{31}=\dfrac{150}{31}\)
Lời giải:
\(5A=\frac{6-1}{1.6}+\frac{11-6}{6.11}+\frac{16-11}{11.16}+....+\frac{501-496}{496.501}\)
\(=\frac{6}{1.6}-\frac{1}{1.6}+\frac{11}{6.11}-\frac{6}{6.11}+\frac{16}{11.16}-\frac{11}{11.16}+...+\frac{501}{496.501}-\frac{496}{496.501}\)
\(=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+....+\frac{1}{496}-\frac{1}{501}=1-\frac{1}{501}=\frac{500}{501}\)
$\Rightarrow A=\frac{100}{501}$
\(A=\dfrac{1}{5}\left(\dfrac{1}{1.6}+...+\dfrac{1}{496.501}\right)\)
\(A=\dfrac{1}{5}\left(1-\dfrac{1}{6}+\cdot\cdot\cdot+\dfrac{1}{495}-\dfrac{1}{501}\right)\)
\(A=\dfrac{1}{5}\left(1-\dfrac{1}{501}\right)\)
\(A=\dfrac{1}{5}\cdot\dfrac{500}{501}=\dfrac{100}{501}\)
\(\dfrac{5x}{1.6}+\dfrac{5x}{6.11}+\dfrac{5x}{11.16}+\dfrac{5x}{16.21}+\dfrac{5x}{21.26}+\dfrac{5x}{26.31}=1\)
\(=x\left(\dfrac{5}{1.6}+\dfrac{5}{6.11}+\dfrac{5}{11.16}+\dfrac{5}{16.21}+\dfrac{5}{21.26}+\dfrac{5}{26.31}\right)=1\)
\(=x\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{21}+\dfrac{1}{21}-\dfrac{1}{26}+\dfrac{1}{26}-\dfrac{1}{31}\right)=1\)
\(=x\left(1-\dfrac{1}{31}\right)=1\)
\(\Rightarrow x=1:\left(1-\dfrac{1}{31}\right)=\dfrac{31}{30}\)
\(S=\dfrac{5^2}{1\cdot6}+\dfrac{5^2}{6\cdot11}+...+\dfrac{5^2}{96\cdot101}\)
\(=5\left(\dfrac{5}{1\cdot6}+\dfrac{5}{6\cdot11}+...+\dfrac{5}{96\cdot101}\right)\)
\(=5\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+...+\dfrac{1}{96}-\dfrac{1}{101}\right)\)
\(=5\left(1-\dfrac{1}{101}\right)=5\cdot\dfrac{100}{101}=\dfrac{500}{101}\)