Cho tam giác ABC vuông tại A,vẽ đường cao AH.Cho biết AB=12cm,BC=20cm.
a)Chứng minh tam giác ABH đồng dạng tam giác CBA.
b)Tính AC,AH.
c)Tia phân giác của góc ABC cắt H tại I và cắt AC tại K.Tính AK.
d)Chứng minh tam giác AIK cân.
Được thì vẽ giùm mình hình luôn ạ,cám ơn mọi người nhiều^^
a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có
\(\widehat{ABH}\) chung
Do đó: ΔABH~ΔCBA
b: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC=\sqrt{20^2-12^2}=16\left(cm\right)\)
ΔABH~ΔCBA
=>\(\dfrac{AH}{CA}=\dfrac{AB}{CB}\)
=>\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{12\cdot16}{20}=9,6\left(cm\right)\)
c: Xét ΔBAC có BK là phân giác
nên \(\dfrac{AK}{KC}=\dfrac{BA}{BC}\left(1\right)\)
=>\(\dfrac{AK}{BA}=\dfrac{KC}{BC}\)
=>\(\dfrac{AK}{12}=\dfrac{KC}{20}\)
=>\(\dfrac{AK}{3}=\dfrac{KC}{5}\)
mà AK+KC=AC=16cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AK}{3}=\dfrac{KC}{5}=\dfrac{AK+KC}{3+5}=\dfrac{16}{8}=2\)
=>\(AK=2\cdot3=6\left(cm\right)\)
d: Xét ΔBAK vuông tại A và ΔBHI vuông tại H có
\(\widehat{ABK}=\widehat{HBI}\)
Do đó: ΔBAK~ΔBHI
=>\(\widehat{BKA}=\widehat{BIH}\)
=>\(\widehat{AIK}=\widehat{AKI}\)
=>ΔAKI cân tại A